Easily Created Prediction Model Using Automated Artificial Intelligence Framework (Prediction One, Sony Network Communications Inc., Tokyo, Japan) for Subarachnoid Hemorrhage Outcomes Treated by Coiling and Delayed Cerebral Ischemia

Department of Neurosurgery, Iwaki City Medical Center, Iwaki, JPN. Department of Neurosurgery, Itoigawa General Hospital, Itoigawa, JPN.

Cureus. 2021;13(6):e15695
Full text from:

Other resources

Introduction Reliable prediction models of subarachnoid hemorrhage (SAH) outcomes and delayed cerebral ischemia (DCI) are needed to decide the treatment strategy. Automated artificial intelligence (AutoAI) is attractive, but there are few reports on AutoAI-based models for SAH functional outcomes and DCI. We herein made models using an AutoAI framework, Prediction One (Sony Network Communications Inc., Tokyo, Japan), and compared it to other previous statistical prediction scores. Methods We used an open dataset of 298 SAH patients, who were with non-severe neurological grade and treated by coiling. Modified Rankin Scale 0-3 at six months was defined as a favorable functional outcome and DCI occurrence as another outcome. We randomly divided them into a 248-patient training dataset and a 50-patient test dataset. Prediction One made the model using training dataset with 5-fold cross-validation. We evaluated the model using the test dataset and compared the area under the curves (AUCs) of the created models. Those of the modified SAFIRE score and the Fisher computed tomography (CT) scale to predict the outcomes. Results The AUCs of the AutoAI-based models for functional outcome in the training and test dataset were 0.994 and 0.801, and those for the DCI occurrence were 0.969 and 0.650. AUCs for functional outcome calculated using modified SAFIRE score were 0.844 and 0.892. Those for the DCI occurrence calculated using the Fisher CT scale were 0.577 and 0.544. Conclusions We easily and quickly made AutoAI-based prediction models. The models' AUCs were not inferior to the previous prediction models despite the easiness.
Study details
Language : eng
Credits : Bibliographic data from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine