-
1.
Resuscitation with blood products in patients with trauma-related haemorrhagic shock receiving prehospital care (RePHILL): a multicentre, open-label, randomised, controlled, phase 3 trial
Crombie N, Doughty HA, Bishop JRB, Desai A, Dixon EF, Hancox JM, Herbert MJ, Leech C, Lewis SJ, Nash MR, et al
The Lancet. Haematology. 2022
-
-
-
Free full text
-
-
Editor's Choice
Abstract
BACKGROUND Time to treatment matters in traumatic haemorrhage but the optimal prehospital use of blood in major trauma remains uncertain. We investigated whether use of packed red blood cells (PRBC) and lyophilised plasma (LyoPlas) was superior to use of 0·9% sodium chloride for improving tissue perfusion and reducing mortality in trauma-related haemorrhagic shock. METHODS Resuscitation with pre-hospital blood products (RePHILL) is a multicentre, allocation concealed, open-label, parallel group, randomised, controlled, phase 3 trial done in four civilian prehospital critical care services in the UK. Adults (age ≥16 years) with trauma-related haemorrhagic shock and hypotension (defined as systolic blood pressure <90 mm Hg or absence of palpable radial pulse) were assessed for eligibility by prehospital critial care teams. Eligible participants were randomly assigned to receive either up to two units each of PRBC and LyoPlas or up to 1 L of 0·9% sodium chloride administered through the intravenous or intraosseous route. Sealed treatment packs which were identical in external appearance, containing PRBC-LyoPlas or 0·9% sodium chloride were prepared by blood banks and issued to participating sites according to a randomisation schedule prepared by the co-ordinating centre (1:1 ratio, stratified by site). The primary outcome was a composite of episode mortality or impaired lactate clearance, or both, measured in the intention-to-treat population. This study is completed and registered with ISRCTN.com, ISRCTN62326938. FINDINGS From Nov 29, 2016 to Jan 2, 2021, prehospital critical care teams randomly assigned 432 participants to PRBC-LyoPlas (n=209) or to 0·9% sodium chloride (n=223). Trial recruitment was stopped before it achieved the intended sample size of 490 participants due to disruption caused by the COVID-19 pandemic. The median follow-up was 9 days (IQR 1 to 34) for participants in the PRBC-LyoPlas group and 7 days (0 to 31) for people in the 0·9% sodium chloride group. Participants were mostly white (62%) and male (82%), had a median age of 38 years (IQR 26 to 58), and were mostly involved in a road traffic collision (62%) with severe injuries (median injury severity score 36, IQR 25 to 50). Before randomisation, participants had received on average 430 mL crystalloid fluids and tranexamic acid (90%). The composite primary outcome occurred in 128 (64%) of 199 participants randomly assigned to PRBC-LyoPlas and 136 (65%) of 210 randomly assigned to 0·9% sodium chloride (adjusted risk difference -0·025% [95% CI -9·0 to 9·0], p=0·996). The rates of transfusion-related complications in the first 24 h after ED arrival were similar across treatment groups (PRBC-LyoPlas 11 [7%] of 148 compared with 0·9% sodium chloride nine [7%] of 137, adjusted relative risk 1·05 [95% CI 0·46-2·42]). Serious adverse events included acute respiratory distress syndrome in nine (6%) of 142 patients in the PRBC-LyoPlas group and three (2%) of 130 in 0·9% sodium chloride group, and two other unexpected serious adverse events, one in the PRBC-LyoPlas (cerebral infarct) and one in the 0·9% sodium chloride group (abnormal liver function test). There were no treatment-related deaths. INTERPRETATION The trial did not show that prehospital PRBC-LyoPlas resuscitation was superior to 0·9% sodium chloride for adult patients with trauma related haemorrhagic shock. Further research is required to identify the characteristics of patients who might benefit from prehospital transfusion and to identify the optimal outcomes for transfusion trials in major trauma. The decision to commit to routine prehospital transfusion will require careful consideration by all stakeholders. FUNDING National Institute for Health Research Efficacy and Mechanism Evaluation.
PICO Summary
Population
Patients aged 16 years old or older with trauma-related haemorrhagic shock enrolled in the resuscitation with pre-hospital blood products (RePHILL) trial, based across four UK prehospital critical care services (n= 432).
Intervention
Packed red blood cells and lyophilised plasma (PRBC-LyoPlas, n= 209).
Comparison
Sodium chloride (n= 223).
Outcome
The primary outcome was a composite of episode mortality or impaired lactate clearance, or both, measured in the intention-to-treat population. The composite primary outcome occurred in 128 (64%) of 199 patients receiving PRBC-LyoPlas and 136 (65%) of 210 receiving sodium chloride. The rates of transfusion-related complications in the first 24 hours after emergency department arrival were similar (PRBC-LyoPlas eleven (7%) of 148 compared with sodium chloride nine (7%) of 137). Serious adverse events included acute respiratory distress syndrome in nine (6%) of 142 patients in the PRBC-LyoPlas group and three (2%) of 130 in the sodium chloride group, and two other unexpected serious adverse events, one in the PRBC-LyoPlas (cerebral infarct) and one in the sodium chloride group (abnormal liver function test). There were no treatment-related deaths.
-
2.
Traumatic injury clinical trial evaluating tranexamic acid in children (TIC-TOC): a pilot randomized trial
Nishijima DK, VanBuren JM, Linakis SW, Hewes HA, Myers SR, Bobinski M, Tran NK, Ghetti S, Adelson PD, Roberts I, et al
Academic emergency medicine : official journal of the Society for Academic Emergency Medicine. 2022
-
-
-
-
Editor's Choice
Abstract
BACKGROUND The antifibrinolytic drug tranexamic acid (TXA) improves survival in adults with traumatic hemorrhage; however, the drug has not been evaluated in a trial in injured children. We evaluated the feasibility of a large-scale trial evaluating the effects of TXA in children with severe hemorrhagic injuries. METHODS Severely injured children (0 up to 18(th) birthday) were randomized into a double-blind randomized trial of 1) TXA 15 mg/kg bolus dose, followed by 2 mg/kg/hr infusion over 8 hours, 2) TXA 30 mg/kg bolus dose, followed by 4 mg/kg/hr infusion over 8 hours, or 3) normal saline placebo bolus and infusion. The trial was conducted at 4 pediatric Level I trauma centers in the United States between June 2018 and March 2020. We enrolled patients under federal exception from informed consent (EFIC) procedures when parents were unable to provide informed consent. Feasibility outcomes included the rate of enrollment, adherence to intervention arms, and ability to measure the primary clinical outcome. Clinical outcomes included global functioning (primary), working memory, total amount of blood products transfused, intracranial hemorrhage progression, and adverse events. The target enrollment rate was at least 1.25 patients per site per month. RESULTS A total of 31 patients were randomized with a mean age of 10.7 years (standard deviation [SD] 5.0 years) and 22 (71%) patients were male. The mean time from injury to randomization was 2.4 hours (SD 0.6 hours). Sixteen (52%) patients had isolated brain injuries and 15 (48%) patients had isolated torso injuries. The enrollment rate using EFIC was 1.34 patients per site per month. All eligible enrolled patients received study intervention (9 patients TXA 15 mg/kg bolus dose, 10 patients TXA 30 mg/kg bolus dose, and 12 patients placebo) and had the primary outcome measured. No statistically significant differences in any of the clinical outcomes were identified. CONCLUSION Based on enrollment rate, protocol adherence, and measurement of the primary outcome in this pilot trial, we confirmed the feasibility of conducting a large-scale, randomized trial evaluating the efficacy of TXA in severely injured children with hemorrhagic brain and/or torso injuries using EFIC.
PICO Summary
Population
Severely injured children enrolled in the TIC-TOC trial across four centers in US (n= 31).
Intervention
15 mg/kg of tranexamic acid (TXA) dose, followed by 2 mg/kg/hr infusion (n= 9).
Comparison
30 mg/kg of TXA dose, followed by 4 mg/kg/hr infusion (n= 10). Saline placebo and infusion (n= 12).
Outcome
All patients had their primary outcome measured. Feasibility outcomes included the rate of enrollment, adherence to intervention arms, and ability to measure the primary clinical outcome. Clinical outcomes included global functioning (primary), working memory, total amount of blood products transfused, intracranial hemorrhage progression, and adverse events. The mean time from injury to randomization was 2.4 hours (SD 0.6 hours). Sixteen (52%) patients had isolated brain injuries and 15 (48%) patients had isolated torso injuries. No statistically significant differences in any of the clinical outcomes were identified.
-
3.
Tranexamic acid is not inferior to placebo with respect to adverse events in supected tbi patients not in shock with a normal head ct: A retrospective study of a randomized trial
Harmer J, Dewey EN, Meier EN, Rowell SE, Schreiber MA
The journal of trauma and acute care surgery. 2022
Abstract
BACKGROUND A 2-gram bolus of tranexamic acid (TXA) has been shown to reduce 28-day mortality in a RCT. This study investigates whether out-of-hospital TXA use is associated with adverse events or unfavorable outcomes in suspected TBI when intracranial hemorrhage (ICH) is absent on initial CT. METHODS This study utilized data from a 2015-2017, multicenter, randomized trial studying the effect of the following TXA doses on moderate to severe TBI: 2-gram bolus, 1-gram bolus plus 1-gram infusion over 8 hours, and a placebo bolus with placebo infusion. Of the 966 participants enrolled, 395 with an initial CT negative for ICH were included in this analysis. Fifteen adverse events (28-day incidence) were studied: MI, DVT, seizure, pulmonary embolism, ARDS, cardiac failure, liver failure, renal failure, CVA, cardiac arrest, cerebral vasospasm, "any thromboembolism", hypernatremia, AKI, and infection. Other unfavorable outcomes analyzed include mortality at 28 days & 6 months, GOSE ≤4 at discharge & 6 months, ICU-free days, ventilator-free days, hospital-free days, and combined unfavorable outcomes. In both study drug groups the incidence of dichotomous outcomes and quantity of ordinal outcomes were compared to placebo. RESULTS No statistically significant increase in adverse events or unfavorable outcomes was found between either TXA dosing regimen and placebo. Demographics and injury scores were not statistically different other than two methods of injury which were overrepresented in the 1-gram TXA bolus +1-gram TXA infusion. CONCLUSIONS Administration of either a 2-gram TXA bolus or a 1-gram TXA bolus plus 1-gram TXA 8-hour infusion in suspected-TBIs without ICH is not associated with increased adverse events or unfavorable outcomes. Because the out-of-hospital 2-gram bolus is associated with a mortality benefit it should be administered in suspected-TBI. LEVELS OF EVIDENCE Level II, Therapeutic.
-
4.
Robotically applied hemostatic clamping for care-under-fire: harnessing bomb robots for hemorrhage control
Kirkpatrick AW, McKee IA, Knudsen B, Shelton R, LaPorta AJ, Wachs J, McKee JL
Canadian journal of surgery. Journal canadien de chirurgie. 2022;65(2):E242-e249
-
-
-
Free full text
-
-
Editor's Choice
Abstract
BACKGROUND Early hemorrhage control after interpersonal violence is the most urgent requirement to preserve life and is now recognized as a responsibility of law enforcement. Although earlier entry of first responders is advocated, many shooting scenes remain unsafe for humans, necessitating first responses conducted by robots. Thus, robotic hemorrhage control warrants study as a care-under-fire treatment option. METHODS Two bomb disposal robots (Wolverine and Dragon Runner) were retrofitted with hemostatic wound clamps. The robots' ability to apply a wound clamp to a simulated extremity exsanguination while controlled by 4 experienced operators was tested. The operators were randomly assigned to perform 10 trials using 1 robot each. A third surveillance robot (Stair Climber) provided further visualization for the operators. We assessed the success rate of the application of the wound clamp to the simulated wound, the time to application of the wound clamp and the amount of fluid loss. We also assessed the operators' efforts to apply the wound clamp after an initial attempt was unsuccessful or after the wound clamp was dropped. RESULTS Remote robotic application of a wound clamp was demonstrated to be feasible, with complete cessation of simulated bleeding in 60% of applications. This finding was consistent across all operators and both robots. There was no difference in the success rates with the 2 robots (p = 1.00). However, there were differences in fluid loss (p = 0.004) and application time (p < 0.001), with the larger (Wolverine) robot being faster and losing less fluid. CONCLUSION Law enforcement tactical robots were consistently able to provide partial to complete hemorrhage control in a simulated extremity exsanguination. Consideration should be given to using this approach in care-under-fire and care-behind-the-barricade scenarios as well as further developing the technology and doctrine for robotic hemorrhage control.
PICO Summary
Population
Public safety bomb technicians (n= 4).
Intervention
Application of wound clamps with the heavy-duty bomb disposal Wolverine robot (n= 2).
Comparison
Application of wound clamps with the lightweight bomb disposal Dragon Runner robot (n= 2).
Outcome
There was complete cessation of simulated bleeding in 60% of applications consistently across all technicians and both robots. There was no difference in success rates with the two robots. However, there were differences in fluid loss and application time, with the Wolverine robot being faster and losing less fluid.
-
5.
A randomized controlled pilot trial of video-modelling versus telementoring for improved hemorrhage control wound packing
Kirkpatrick AW, McKee JL, Tomlinson C, Donley N, Ball CG, Wachs J
American journal of surgery. 2022
Abstract
INTRODUCTION Exsanguination is the most preventable cause of death. Paradigms such as STOP THE BLEED recognize increased responsibility among the less experienced with Wound Packing (WP) being a critical skill. As even trained providers may perform poorly, we compared Video-modelling (VM), a form of behavioural modelling involving video demonstration prior to intervention against remote telementoring (RTM) involving remote real-time expert-guidance. METHODS Search and Rescue (SAR-Techs), trained in WP were asked to pack a wound on a standardized simulator randomized to RMT, VM, or control. RESULTS 24 SAR-Techs (median age 37, median 16.5 years experience) participated. Controls were consistently faster than RTM (p = 0.005) and VM (p = 0.000), with no difference between RTM and VM. However, 50% (n = 4) Controls failed to pack properly, compared to 100% success in both VM and RTM, despite all SAR-Techs feeling the task was "easy". DISCUSSION Performance of a life-saving technique was improved through either VM or RTM, suggesting that both techniques are beneficial and complementary to each other. Further work should be extended to law enforcement/lay public to examine logistical challenges.
-
6.
Tranexamic acid to reduce head injury death in people with traumatic brain injury: the CRASH-3 international RCT
Roberts I, Shakur-Still H, Aeron-Thomas A, Beaumont D, Belli A, Brenner A, Cargill M, Chaudhri R, Douglas N, Frimley L, et al
Health technology assessment (Winchester, England). 2021;25(26):1-76
-
-
-
Free full text
-
Editor's Choice
Abstract
BACKGROUND Tranexamic acid safely reduces mortality in traumatic extracranial bleeding. Intracranial bleeding is common after traumatic brain injury and can cause brain herniation and death. We assessed the effects of tranexamic acid in traumatic brain injury patients. OBJECTIVE To assess the effects of tranexamic acid on death, disability and vascular occlusive events in traumatic brain injury patients. We also assessed cost-effectiveness. DESIGN Randomised trial and economic evaluation. Patients were assigned by selecting a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients, caregivers and those assessing outcomes were masked to allocation. All analyses were by intention to treat. We assessed the cost-effectiveness of tranexamic acid versus no treatment from a UK NHS perspective using the trial results and a Markov model. SETTING 175 hospitals in 29 countries. PARTICIPANTS Adults with traumatic brain injury within 3 hours of injury with a Glasgow Coma Scale score of ≤ 12 or any intracranial bleeding on computerised tomography scan, and no major extracranial bleeding, were eligible. INTERVENTION Tranexamic acid (loading dose 1 g over 10 minutes then infusion of 1 g over 8 hours) or matching placebo. MAIN OUTCOME MEASURES Head injury death in hospital within 28 days of injury in patients treated within 3 hours of injury. Secondary outcomes were early head injury deaths, all-cause and cause-specific mortality, disability, vascular occlusive events, seizures, complications and adverse events. RESULTS Among patients treated within 3 hours of injury (n = 9127), the risk of head injury death was 18.5% in the tranexamic acid group versus 19.8% in the placebo group (855/4613 vs. 892/4514; risk ratio 0.94, 95% confidence interval 0.86 to 1.02). In a prespecified analysis excluding patients with a Glasgow Coma Scale score of 3 or bilateral unreactive pupils at baseline, the results were 12.5% in the tranexamic acid group versus 14.0% in the placebo group (485/3880 vs. 525/3757; risk ratio 0.89, 95% confidence interval 0.80 to 1.00). There was a reduction in the risk of head injury death with tranexamic acid in those with mild to moderate head injury (166/2846 vs. 207/2769; risk ratio 0.78, 95% confidence interval 0.64 to 0.95), but in those with severe head injury (689/1739 vs. 685/1710; risk ratio 0.99, 95% confidence interval 0.91 to 1.07) there was no apparent reduction (p-value for heterogeneity = 0.030). Early treatment was more effective in mild and moderate head injury (p = 0.005), but there was no obvious impact of time to treatment in cases of severe head injury (p = 0.73). The risk of disability, vascular occlusive events and seizures was similar in both groups. Tranexamic acid is highly cost-effective for mild and moderate traumatic brain injury (base case of £4288 per quality-adjusted life-year gained). CONCLUSION Early tranexamic acid treatment reduces head injury deaths. Treatment is cost-effective for patients with mild or moderate traumatic brain injury, or those with both pupils reactive. FUTURE WORK Further trials should examine early tranexamic acid treatment in mild head injury. Research on alternative routes of administration is needed. LIMITATIONS Time to treatment may have been underestimated. TRIAL REGISTRATION Current Controlled Trials ISRCTN15088122, ClinicalTrials.gov NCT01402882, EudraCT 2011-003669-14, Pan African Clinical Trial Registry PACTR20121000441277. FUNDING The project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 26. See the NIHR Journals Library website for further project information. In addition, funding was provided by JP Moulton Charitable Trust, Joint Global Health Trials (Medical Research Council, Department for International Development and the Wellcome Trust). This project was funded by the NIHR Global Health Trials programme.
PICO Summary
Population
Adults with traumatic brain injury enrolled in the CRASH-3 trial (n=9127).
Intervention
Tranexamic acid (TXA), (n= 4613).
Comparison
Matching placebo (n= 4514).
Outcome
The risk of head injury death was 18.5% in the TXA group versus 19.8% in the placebo group. In a pre-specified analysis excluding patients with a Glasgow Coma Scale score of 3 or bilateral unreactive pupils at baseline, the results were 12.5% in the TXA group versus 14.0% in the placebo group. There was a reduction in the risk of head injury death with tranexamic acid in those with mild to moderate head injury, but in those with severe head injury there was no apparent reduction. Early treatment was more effective in mild and moderate head injury, but there was no obvious impact of time to treatment in cases of severe head injury. The risk of disability, vascular occlusive events and seizures was similar in both groups.
-
7.
A Post Hoc Analysis of Osmotherapy Use in the Erythropoietin in Traumatic Brain Injury Study-Associations With Acute Kidney Injury and Mortality
Skrifvars MB, Bailey M, Moore E, Mårtensson J, French C, Presneill J, Nichol A, Little L, Duranteau J, Huet O, et al
Critical care medicine. 2021
-
-
Free full text
-
Abstract
OBJECTIVES Mannitol and hypertonic saline are used to treat raised intracerebral pressure in patients with traumatic brain injury, but their possible effects on kidney function and mortality are unknown. DESIGN A post hoc analysis of the erythropoietin trial in traumatic brain injury (ClinicalTrials.gov NCT00987454) including daily data on mannitol and hypertonic saline use. SETTING Twenty-nine university-affiliated teaching hospitals in seven countries. PATIENTS A total of 568 patients treated in the ICU for 48 hours without acute kidney injury of whom 43 (7%) received mannitol and 170 (29%) hypertonic saline. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We categorized acute kidney injury stage according to the Kidney Disease Improving Global Outcome classification and defined acute kidney injury as any Kidney Disease Improving Global Outcome stage-based changes from the admission creatinine. We tested associations between early (first 2 d) mannitol and hypertonic saline and time to acute kidney injury up to ICU discharge and death up to 180 days with Cox regression analysis. Subsequently, acute kidney injury developed more often in patients receiving mannitol (35% vs 10%; p < 0.001) and hypertonic saline (23% vs 10%; p < 0.001). On competing risk analysis including factors associated with acute kidney injury, mannitol (hazard ratio, 2.3; 95% CI, 1.2-4.3; p = 0.01), but not hypertonic saline (hazard ratio, 1.6; 95% CI, 0.9-2.8; p = 0.08), was independently associated with time to acute kidney injury. In a Cox model for predicting time to death, both the use of mannitol (hazard ratio, 2.1; 95% CI, 1.1-4.1; p = 0.03) and hypertonic saline (hazard ratio, 1.8; 95% CI, 1.02-3.2; p = 0.04) were associated with time to death. CONCLUSIONS In this post hoc analysis of a randomized controlled trial, the early use of mannitol, but not hypertonic saline, was independently associated with an increase in acute kidney injury. Our findings suggest the need to further evaluate the use and choice of osmotherapy in traumatic brain injury.
-
8.
Enrollment with and without Exception from Informed Consent in a Pilot Trial of Tranexamic Acid in Children with Hemorrhagic Injuries
Linakis SW, Kuppermann N, Stanley RM, Hewes H, Myers S, VanBuren JM, Charles Casper T, Bobinski M, Ghetti S, Schalick WO 3rd, et al
Academic emergency medicine : official journal of the Society for Academic Emergency Medicine. 2021
Abstract
BACKGROUND Federal exception from informed consent (EFIC) procedures allow studies to enroll patients with time-sensitive, life-threatening conditions when written consent is not feasible. Our objective was to compare enrollment rates with and without EFIC in a trial of tranexamic acid (TXA) for children with hemorrhagic injuries. METHODS We conducted a four-center randomized controlled pilot and feasibility trial evaluating TXA in children with severe hemorrhagic brain and/or torso injuries. We initiated the trial enrolling patients without EFIC. After 3 months of enrollment, we met our a priori futility threshold and paused the trial to incorporate EFIC procedures and obtain regulatory approval. We then restarted the trial allowing EFIC if the guardian was unable to provide timely written consent. We used descriptive statistics to compare characteristics of eligible patients approached with and without EFIC procedures. We also calculated the time delay to restart the trial using EFIC. RESULTS We enrolled 1 of 15 (6.7%) eligible patients (0.17 per site per month) prior to using EFIC procedures. Of the 14 missed eligible patients, 7 (50%) were not enrolled because guardians were not present or were injured and unable to provide written consent. After obtaining approval for EFIC, we enrolled 30 of 48 (62.5%) eligible patients (1.34 per site per month). Of these 30 patients, 22 (73.3%) were enrolled with EFIC. Of the 22, no guardians refused written consent after randomization. There were no significant differences in the eligibility rate and patient characteristics enrolled with and without EFIC procedures. Across all sites, the mean delay to restart the trial using EFIC procedures was 12 months. CONCLUSIONS In a multicenter trial of severely injured children, the use of EFIC procedures greatly increased the enrollment rate and was well accepted by guardians. Initiating the trial without EFIC procedures led to a significant delay in enrollment.
-
9.
Pilot randomized trial of pre-hospital advanced therapies for the control of hemorrhage (PATCH) using pelvic binders
Pierrie SN, Seymour RB, Wally MK, Studnek J, Infinger A, Hsu JR
The American journal of emergency medicine. 2021;42:43-48
Abstract
BACKGROUND Pelvic fractures represent a small percent of all skeletal injuries but are associated with significant morbidity and mortality secondary to hemodynamic instability from bleeding bone surfaces and disrupted pelvic vasculature. Stabilization of the pelvis prior to arrival at a treatment facility may mitigate the hemodynamic consequences of pelvic ring injuries and improve morbidity and mortality. Whether pelvic compression devices such as pelvic binders or sheets can be safely applied in the prehospital setting has not been well-studied. This study aims to evaluate the safety of applying a pelvic binder to at-risk patients in the field after scalable training and the feasibility of conducting a randomized trial evaluating this practice in the prehospital setting. METHODS A pilot study (prospective randomized trial design) was conducted in the pre-hospital environment in an urban area surrounding a level-one trauma center. Pre-hospital emergency medical (EMS) personnel were trained to identify patients at high-risk for pelvic fracture and properly apply a commercial pelvic binder. Adult patients with a high-energy mechanism, suspected pelvic fracture, and "Priority 1" criteria were prospectively identified by paramedics and randomized to pelvic binder placement or usual care. Medical records were reviewed for safety outcomes. Secondary outcomes were parameters of efficacy including interventions needed to control hemorrhage (such as angioembolization and surgical control of bleeding) and mortality. RESULTS Forty-three patients were randomized to treatment (binder: N=20; nonbinder: N=23). No complications of binder placement were identified. Eight patients (40%) had binders placed correctly at the level of the greater trochanter. Two binders (10%) were placed too proximally and 10 (50%) binders were not visualized on x-ray. Two binder group patients and three nonbinder group patients required angioembolization. None required surgical control of pelvic bleeding. Two nonbinder group patients and one binder group patient were readmitted within 30 days and one nonbinder group patient died within 30 days. CONCLUSION Identification of pelvic fractures in the field remains a challenge. However, a scalable training model for appropriate binder placement was successful without secondary injury to patients. The model for conducting prospective, randomized trials in the prehospital setting was successful.
-
10.
Efficacy and safety of the second in-hospital dose of tranexamic acid after receiving the prehospital dose: double-blind randomized controlled clinical trial in a level 1 trauma center
El-Menyar A, Ahmed K, Hakim S, Kanbar A, Mathradikkal S, Siddiqui T, Jogol H, Younis B, Taha I, Mahmood I, et al
European journal of trauma and emergency surgery : official publication of the European Trauma Society. 2021
Abstract
BACKGROUND Prehospital administration of tranexamic acid (TXA) to injured patients is increasing worldwide. However, optimal TXA dose and need of a second infusion on hospital arrival remain undetermined. We investigated the efficacy and safety of the second in-hospital dose of TXA in injured patients receiving 1 g of TXA in the prehospital setting. We hypothesized that a second in-hospital dose of TXA improves survival of trauma patients. METHODS A prospective, double-blind, placebo-controlled randomized, clinical trial included adult trauma patients receiving 1 g of TXA in the prehospital settings. Patients were then blindly randomized to Group I (second 1-g TXA) and Group II (placebo) on hospital arrival. The primary outcome was 24-h (early) and 28-day (late) mortality. Secondary outcomes were thromboembolic events, blood transfusions, hospital length of stay (HLOS) and organs failure (MOF). RESULTS A total of 220 patients were enrolled, 110 in each group. The TXA and placebo groups had a similar early [OR 1.000 (0.062-16.192); p = 0.47] and late mortality [OR 0.476 (95% CI 0.157-1.442), p = 0.18].The cause of death (n = 15) was traumatic brain injury (TBI) in 12 patients and MOF in 3 patients. The need for blood transfusions in the first 24 h, number of transfused blood units, HLOS, thromboembolic events and multiorgan failure were comparable in the TXA and placebo groups. In seriously injured patients (injury severity score > 24), the MTP activation was higher in the placebo group (31.3% vs 11.10%, p = 0.13), whereas pulmonary embolism (6.9% vs 2.9%, p = 0.44) and late mortality (27.6% vs 14.3%, p = 0.17) were higher in the TXA group but did not reach statistical significance. CONCLUSION The second TXA dose did not change the mortality rate, need for blood transfusion, thromboembolic complications, organ failure and HLOS compared to a single prehospital dose and thus its routine administration should be revisited in larger and multicenter studies. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03846973.