-
1.
Management strategies for perioperative anaemia in the severely burn-injured Jehovah's Witness patients who decline a blood transfusion: A systematic review with illustrative case reports
Jung M, Harish V, Wijewardena A, Kerridge I, Gillies R
Burns: journal of the International Society for Burn Injuries. 2022
Abstract
BACKGROUND The management of severe burn-injured Jehovah's Witness patients who decline a blood transfusion poses unique challenges. The literature is scant for guiding perioperative anaemia management in these patients. We present a systematic review of this patient group, along with illustrative, consecutive case reports of our experience. METHODS A systematic review was performed on Embase, MEDLINE and PubMed databases on articles discussing the treatment of burn-injured Jehovah's Witness patients. Articles were excluded if discussing isolated inhalation injury, or if blood transfusions were permitted. RESULTS Nine articles including a total of 11 patients revealed consistent themes. A multimodal medical and surgical approach is suggested. Medical strategies are directed at reducing blood loss and optimising haematopoiesis and include rationalising blood collection, reversing coagulopathy, administering tranexamic acid and regular erythropoietin. Surgical strategies include staged aggressive debridement, tumescent adrenaline infiltration and limb tourniquets. We found that the argon beam coagulator was an effective haemostatic adjunct not previously described in literature. DISCUSSION Management of anaemia in severely burn-injured Jehovah's Witness patients is challenging. This systematic review presents a summary of strategies directed at minimising blood loss, and optimising haematopoiesis. Careful preoperative planning, meticulous surgical technique, and postoperative physiological support are caveats to success.
-
2.
Efficacy and Safety of Intravenous Iron Therapy for Treating Anaemia in Critically ill Adults: A Rapid Systematic Review With Meta-Analysis
Geneen LJ, Kimber C, Doree C, Stanworth S, Shah A
Transfusion medicine reviews. 2021
-
-
-
-
Editor's Choice
Abstract
Our objective was to systematically evaluate the efficacy and safety of intravenous (IV) iron therapy for treating anaemia in critically ill adults (>16 years) admitted to intensive care or high dependency units. We excluded quasi-RCTs and other not truly randomised trials. We searched 7 electronic databases (including CENTRAL, MEDLINE, and Embase) using a pre-defined search strategy from inception to June 14, 2021. One reviewer screened, extracted, and analysed data, with verification by a second reviewer of all decisions. We used Cochrane risk of bias (ROB) 1 and GRADE to assess the certainty of the evidence. We reported 3 comparisons across 1198 patients, in 8 RCTs: (1) IV iron vs control (7 RCTs, 748 participants); our primary outcome (hemoglobin (Hb) concentration at 10 to 30 days) was reported in 7 of the 8 included trials. There was evidence of an effect (very-low certainty) in favour of IV iron over control in the main comparison only (6 RCTs, n = 528, mean difference (MD) 0.52g/dL [95%CI 0.23, 0.81], P = .0005). For the remaining outcomes there was no evidence of an effect in either direction (low certainty of evidence for Hb concentration at <10 days; very-low certainty of evidence for hospital duration, ICU duration, hospital readmission, infection, mortality; HRQoL outcomes were not GRADED). (2) IV iron + subcutaneous erythropoietin (EPO) vs control (2 RCTs, 104 participants); reported outcomes showed no evidence of effect in either direction, based on very-low certainty evidence (Hb concentration at 10-30 days, and <10 days, infection, mortality). (3) Hepcidin-guided treatment with IV iron or iron+ EPO vs standard care (1 RCT, 399 participants) reported evidence of an effect in favour of the intervention for 90-day mortality (low certainty of evidence), but no other group differences for the reported outcomes (low certainty evidence for Hb concentration at 10-30 days, hospital duration; HRQoL was not GRADED). The evidence across all comparisons was downgraded for high and unclear ROB for lack of blinding, incomplete outcome data, baseline imbalance, and imprecision around the estimate (wide CIs and small sample size). In conclusion, the current evidence continues to support further investigation into the role for iron therapy in increasing Hb in critically ill patients. Recent, small, trials have begun to focus on patient-centred outcomes but a large, well conducted, and adequately powered trial is needed to inform clinical practice.
PICO Summary
Population
Critically ill adults admitted to intensive care or high dependency units (8 studies, n= 1,198).
Intervention
Intravenous (IV) iron therapy; IV iron and subcutaneous erythropoietin (EPO); Hepcidin and targeted IV iron treatment (with and without EPO).
Comparison
Placebo/no iron therapy, or EPO therapy; Standard care.
Outcome
Seven trials (n= 748) comparing IV vs. control, found evidence of an effect in favour of IV iron in the main comparison only (6 RCTs, n = 528, mean difference (MD) 0.52g/dL). There was no evidence of an effect in either direction for hospital duration, intensive care unit duration, hospital readmission, infection, and mortality. For the two trials (n= 104) comparing IV iron and subcutaneous erythropoietin (EPO) vs. control, the reported outcomes showed no evidence of effect in either direction (Hb concentration at 10-30 days, and <10 days, infection, mortality). One trial (n= 399) comparing hepcidin-guided treatment with IV iron or iron and EPO vs. standard care reported evidence of an effect in favour of the intervention for 90-day mortality, but no other group differences for Hb concentration at 10-30 days, hospital duration, and HRQoL.
-
3.
Management and prevention of anemia (acute bleeding excluded) in adult critical care patients
Lasocki S, Pène F, Ait-Oufella H, Aubron C, Ausset S, Buffe, P, Huet O, Launey Y, Legrand M, Lescot T, et al
Ann Intensive Care. 2020;10(1):97
Abstract
OBJECTIVE Anemia is very common in critical care patients, on admission (affecting about two-thirds of patients), but also during and after their stay, due to repeated blood loss, the effects of inflammation on erythropoiesis, a decreased red blood cell life span, and haemodilution. Anemia is associated with severity of illness and length of stay. METHODS A committee composed of 16 experts from four scientific societies, SFAR, SRLF, SFTS and SFVTT, evaluated three fields: (1) anemia prevention, (2) transfusion strategies and (3) non-transfusion treatment of anemia. Population, Intervention, Comparison, and Outcome (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Analysis of the literature and formulation of recommendations were then conducted according to the GRADE(®) methodology. RESULTS The SFAR-SRLF guideline panel provided ten statements concerning the management of anemia in adult critical care patients. Acute haemorrhage and chronic anemia were excluded from the scope of these recommendations. After two rounds of discussion and various amendments, a strong consensus was reached for ten recommendations. Three of these recommendations had a high level of evidence (GRADE 1±) and four had a low level of evidence (GRADE 2±). No GRADE recommendation could be provided for two questions in the absence of strong consensus. CONCLUSIONS The experts reached a substantial consensus for several strong recommendations for optimal patient management. The experts recommended phlebotomy reduction strategies, restrictive red blood cell transfusion and a single-unit transfusion policy, the use of red blood cells regardless of storage time, treatment of anaemic patients with erythropoietin, especially after trauma, in the absence of contraindications and avoidance of iron therapy (except in the context of erythropoietin therapy).
-
4.
Early erythropoiesis-stimulating agents in preterm or low birth weight infants
Ohlsson A, Aher SM
The Cochrane database of systematic reviews. 2020;2:Cd004863
Abstract
BACKGROUND Preterm infants have low plasma levels of erythropoietin (EPO), providing a rationale for the use of erythropoiesis-stimulating agents (ESAs) to prevent or treat anaemia and to provide neuro protection and protection against necrotising enterocolitis (NEC). Darbepoetin (Darbe) and EPO are currently available ESAs. OBJECTIVES To assess the effectiveness and safety of ESAs (erythropoietin (EPO) and/or Darbe) initiated early (before eight days after birth) compared with placebo or no intervention in reducing red blood cell (RBC) transfusions, adverse neurological outcomes, and feeding intolerance including necrotising enterocolitis (NEC) in preterm and/or low birth weight infants. Primary objective for studies that primarily investigate the effectiveness and safety of ESAs administered early in reducing red blood cell transfusions: To assess the effectiveness and safety of ESAs initiated early in reducing red blood cell transfusions in preterm infants. Secondary objectives: Review authors performed subgroup analyses of low (≤ 500 IU/kg/week) and high (> 500 IU/kg/week) doses of EPO and the amount of iron supplementation provided: none, low (≤ 5 mg/kg/d), and high (> 5 mg/kg/d). Primary objective for studies that primarily investigate the neuro protective effectiveness of ESAs: To assess the effectiveness and safety of ESAs initiated early in reducing adverse neurological outcomes in preterm infants. Primary objective for studies that primarily investigate the effectiveness of EPO or Darbe administered early in reducing feeding intolerance: To assess the effectiveness and safety of ESAs administered early in reducing feeding intolerance (and NEC) in preterm infants. Other secondary objectives: To compare the effectiveness of ESAs in reducing the incidence of adverse events and improving long-term neurodevelopmental outcomes. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE via PubMed (1966 to 10 March 2017), Embase (1980 to 10 March 2017), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to 10 March 2017). We searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised and quasi-randomised controlled trials. SELECTION CRITERIA Randomised and quasi-randomised controlled trials of early initiation of EAS treatment versus placebo or no intervention in preterm or low birth weight infants. DATA COLLECTION AND ANALYSIS We used the methods described in the Cochrane Handbook for Systematic Reviews of Interventions and the GRADE approach to assess the quality of evidence. MAIN RESULTS This updated review includes 34 studies enrolling 3643 infants. All analyses compared ESAs versus a control consisting of placebo or no treatment. Early ESAs reduced the risk of 'use of one or more [red blood cell] RBC transfusions' (typical risk ratio (RR) 0.79, 95% confidence interval (CI) 0.74 to 0.85; typical risk difference (RD) -0.14, 95% CI -0.18 to -0.10; I(2) = 69% for RR and 62% for RD (moderate heterogeneity); number needed to treat for an additional beneficial outcome (NNTB) 7, 95% CI 6 to 10; 19 studies, 1750 infants). The quality of the evidence was low. Necrotising enterocolitis was significantly reduced in the ESA group compared with the placebo group (typical RR 0.69, 95% CI 0.52 to 0.91; typical RD -0.03, 95% CI -0.05 to -0.01; I(2) = 0% for RR and 22% for RD (low heterogeneity); NNTB 33, 95% CI 20 to 100; 15 studies, 2639 infants). The quality of the evidence was moderate. Data show a reduction in 'Any neurodevelopmental impairment at 18 to 22 months' corrected age in the ESA group (typical RR 0.62, 95% CI 0.48 to 0.80; typical RD -0.08, 95% CI -0.12 to -0.04; NNTB 13, 95% CI 8 to 25. I(2) = 76% for RR (high heterogeneity) and 66% for RD (moderate); 4 studies, 1130 infants). The quality of the evidence was low. Results reveal increased scores on the Bayley-II Mental Development Index (MDI) at 18 to 24 months in the ESA group (weighted mean difference (WMD) 8.22, 95% CI 6.52 to 9.92; I(2) = 97% (high heterogeneity); 3 studies, 981 children). The quality of the evidence was low. The total volume of RBCs transfused per infant was reduced by 7 mL/kg. The number of RBC transfusions per infant was minimally reduced, but the number of donors to whom infants who were transfused were exposed was not significantly reduced. Data show no significant difference in risk of stage ≥ 3 retinopathy of prematurity (ROP) with early EPO (typical RR 1.24, 95% CI 0.81 to 1.90; typical RD 0.01, 95% CI -0.02 to 0.04; I(2) = 0% (no heterogeneity) for RR; I(2) = 34% (low heterogeneity) for RD; 8 studies, 1283 infants). Mortality was not affected, but results show significant reductions in the incidence of intraventricular haemorrhage (IVH) and periventricular leukomalacia (PVL). AUTHORS' CONCLUSIONS Early administration of ESAs reduces the use of red blood cell (RBC) transfusions, the volume of RBCs transfused, and donor exposure after study entry. Small reductions are likely to be of limited clinical importance. Donor exposure probably is not avoided, given that all but one study included infants who had received RBC transfusions before trial entry. This update found no significant difference in the rate of ROP (stage ≥ 3) for studies that initiated EPO treatment at less than eight days of age, which has been a topic of concern in earlier versions of this review. Early EPO treatment significantly decreased rates of IVH, PVL, and NEC. Neurodevelopmental outcomes at 18 to 22 months and later varied in published studies. Ongoing research should evaluate current clinical practices that will limit donor exposure. Promising but conflicting results related to the neuro protective effect of early EPO require further study. Very different results from the two largest published trials and high heterogeneity in the analyses indicate that we should wait for the results of two ongoing large trials before drawing firm conclusions. Administration of EPO is not currently recommended because limited benefits have been identified to date. Use of darbepoetin requires further study.
-
5.
Erythropoietin stimulating agents as replacement therapy for blood transfusions in critically ill patients with anaemia: A systematic review with meta-analysis
Wijnberge M, Rellum SR, de Bruin S, Cecconi M, Oczkowski S, Vlaar AP
Transfusion medicine (Oxford, England). 2020
Abstract
OBJECTIVES The primary objectives of this meta-analysis in critically ill adult patients admitted to the intensive care unit (ICU) were to analyse whether erythropoiesis-stimulating agents (ESAs) reduced the number of patients receiving red blood cell (RBC) transfusion and resulted in a change in haemoglobin (Hb) concentration. Our secondary objectives were adverse events and mortality. BACKGROUND Anaemia is common in ICU patients, and currently, the standard therapy is RBC transfusion, which is known to be associated with adverse events. ESA could potentially reduce the need for RBC transfusion. METHODS EMBASE, Cochrane and PubMed were searched up to January 2020. RESULTS A total of 1357 articles were identified, of which 18 articles met the inclusion criteria for the qualitative synthesis. Eight of these studies were used in the meta-analyses. Comparing ESA vs control group, there was a small reduction in the proportion of patients who received one or more RBC transfusions (relative risk [RR] 0.88; confidence interval [CI] 0.78-1.00, moderate certainty). The change in Hb concentration was trivial (mean difference -0.31 g/dL; CI -0.51 to -0.05, high certainty). The number of serious adverse events (RR 1.02; 0.90-1.15, low certainty) and the overall short-term mortality were similar (RR 0.80; CI 0.61-1.05, low certainty) between the groups. CONCLUSION ESA resulted in a small reduction in the proportion of patients transfused and a trivial increase in haemoglobin concentration, both of questionable clinical relevance, without impacting adverse events or mortality. These results do not support the routine use of ESA to treat anaemia in critically ill adults.
-
6.
Late erythropoiesis-stimulating agents to prevent red blood cell transfusion in preterm or low birth weight infants
Aher SM, Ohlsson A
The Cochrane database of systematic reviews. 2020;1:Cd004868
-
-
-
Free full text
-
Full text
-
Editor's Choice
Abstract
BACKGROUND Preterm infants have low plasma levels of erythropoietin (EPO), providing a rationale for the use of erythropoiesis-stimulating agents (ESAs) to prevent or treat anaemia. Darbepoetin (Darbe) and EPO are currently available ESAs. OBJECTIVES To assess the effectiveness and safety of late initiation of ESAs, between eight and 28 days after birth, in reducing the use of red blood cell (RBC) transfusions in preterm or low birth weight infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2018, Issue 5), MEDLINE via PubMed (1966 to 5 June 2018), Embase (1980 to 5 June 2018), and CINAHL (1982 to 5 June 2018). We searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised or quasi-randomised controlled trials of late initiation of EPO treatment (started at ≥ eight days of age) versus placebo or no intervention in preterm (< 37 weeks) or low birth weight (< 2500 grams) neonates. DATA COLLECTION AND ANALYSIS We performed data collection and analyses in accordance with the methods of the Cochrane Neonatal Review Group. We used the GRADE approach to assess the quality of the evidence. MAIN RESULTS We include 31 studies (32 comparisons) randomising 1651 preterm infants. Literature searches in 2018 identified one new study for inclusion. No new on-going trials were identified and no studies used darbepoetin. Most included trials were of small sample size. The meta-analysis showed a significant effect on the use of one or more RBC transfusions (21 studies (n = 1202); typical risk ratio (RR) 0.72, 95% confidence interval (CI) 0.65 to 0.79; typical risk difference (RD) -0.17, 95% CI -0.22 to -0.12; typical number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 5 to 8). There was moderate heterogeneity for this outcome (RR I(2) = 66%; RD I(2) = 58%). The quality of the evidence was very low. We obtained similar results in secondary analyses based on different combinations of high/low doses of EPO and iron supplementation. There was no significant reduction in the total volume (mL/kg) of blood transfused per infant (typical mean difference (MD) -1.6 mL/kg, 95% CI -5.8 to 2.6); 5 studies, 197 infants). There was high heterogeneity for this outcome (I(2) = 92%). There was a significant reduction in the number of transfusions per infant (11 studies enrolling 817 infants; typical MD -0.22, 95% CI -0.38 to -0.06). There was high heterogeneity for this outcome (I(2) = 94%). Three studies including 404 infants reported on retinopathy of prematurity (ROP) (all stages or stage not reported), with a typical RR 1.27 (95% CI 0.99 to 1.64) and a typical RD of 0.09 (95% CI -0.00 to 0.18). There was high heterogeneity for this outcome for both RR (I(2) = 83%) and RD (I(2) = 82%). The quality of the evidence was very low.Three trials enrolling 442 infants reported on ROP (stage ≥ 3). The typical RR was 1.73 (95% CI 0.92 to 3.24) and the typical RD was 0.05 (95% CI -0.01 to 0.10). There was no heterogeneity for this outcome for RR (I(2) = 18%) but high heterogeneity for RD (I(2) = 79%). The quality of the evidence was very low.There were no significant differences in other clinical outcomes including mortality and necrotising enterocolitis. For the outcomes of mortality and necrotising enterocolitis, the quality of the evidence was moderate. Long-term neurodevelopmental outcomes were not reported. AUTHORS' CONCLUSIONS Late administration of EPO reduces the use of one or more RBC transfusions, the number of RBC transfusions per infant (< 1 transfusion per infant) but not the total volume (mL/kg) of RBCs transfused per infant. Any donor exposure is likely not avoided as most studies included infants who had received RBC transfusions prior to trial entry. Late EPO does not significantly reduce or increase any clinically important adverse outcomes except for a trend in increased risk for ROP. Further research of the use of late EPO treatment, to prevent donor exposure, is not indicated. Research efforts should focus on limiting donor exposure during the first few days of life in sick neonates, when RBC requirements are most likely to be required and cannot be prevented by late EPO treatment. The use of satellite packs (dividing one unit of donor blood into many smaller aliquots) may reduce donor exposure.
PICO Summary
Population
Preterm or low birth weight infants, (31 studies, n=1651).
Intervention
Late initiation of erythropoiesis-stimulating agents (ESAs), between eight and 28 days after birth.
Comparison
Placebo or no intervention.
Outcome
The results showed that late administration of erythropoietin reduces the use of one or more blood transfusions following study entry. These results were quite consistent (overlapping confidence intervals) when including studies that used both low and high doses of EPO in combination with low and high doses of iron.
-
7.
Safety and efficacy of erythropoiesis-stimulating agents in critically ill patients admitted to the intensive care unit: a systematic review and meta-analysis
Litton E, Latham P, Inman J, Luo J, Allan P
Intensive care medicine. 2019
Abstract
PURPOSE Severe immune dysregulation is common in patients admitted to the intensive care unit (ICU) and is associated with adverse outcomes. Erythropoietin-stimulating agents (ESAs) have immune-modulating and anti-apoptotic effects. However, their safety and efficacy in critically ill patients remain uncertain. We evaluated whether ESAs, administered to critically unwell adult patients admitted to the ICU, reduced mortality at hospital discharge. METHODS The search strategy was conducted according to a predetermined protocol and included OVID MEDLINE, OVID EMBASE and The Cochrane Central Register of Controlled Trials from inception until 20 May 2019. Publications were eligible for inclusion if they were randomized controlled trials (RCTs) including adult patients admitted to an ICU, that identified and reported a group receiving ESA therapy compared to a group not receiving ESA therapy and reported mortality. There were no language restrictions. RESULTS The systematic review included 21 studies with 5452 participants. In-hospital mortality, reported in 16 studies of which only one was at low risk of bias, was lower in the ESA group (276 of 2187 patients, 12.6%) than the comparator group (339 out of 2204 patients, 15.4%), [relative risk (RR) 0.82, 95% CI 0.71-0.94, P = 0.006, I(2) = 0.0%]. The RR of SAEs and thromboembolic events for the ESA and comparator groups were similar, RR 1.11 (95% CI 0.94-1.31, P = 0.228, I(2) 66%) and 1.22 (95% CI 0.95-1.58, P = 0.086, I(2) 47%), respectively. CONCLUSIONS In heterogenous populations of critically ill adults, evidence from RCTs of mainly low or unclear quality, suggests that ESA therapy may decrease mortality.
-
8.
Late erythropoiesis-stimulating agents to prevent red blood cell transfusion in preterm or low birth weight infants
Aher SM, Ohlsson A
The Cochrane database of systematic reviews. 2019;2:Cd004868
Abstract
BACKGROUND Preterm infants have low plasma levels of erythropoietin (EPO), providing a rationale for the use of erythropoiesis-stimulating agents (ESAs) to prevent or treat anaemia. Darbepoetin (Darbe) and EPO are currently available ESAs. OBJECTIVES To assess the effectiveness and safety of late initiation of ESAs, between eight and 28 days after birth, in reducing the use of red blood cell (RBC) transfusions in preterm or low birth weight infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2018, Issue 5), MEDLINE via PubMed (1966 to 5 June 2018), Embase (1980 to 5 June 2018), and CINAHL (1982 to 5 June 2018). We searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised or quasi-randomised controlled trials of late initiation of EPO treatment (started at ≥ eight days of age) versus placebo or no intervention in preterm (< 37 weeks) or low birth weight (< 2500 grams) neonates. DATA COLLECTION AND ANALYSIS We performed data collection and analyses in accordance with the methods of the Cochrane Neonatal Review Group. We used the GRADE approach to assess the quality of the evidence. MAIN RESULTS We include 31 studies (32 comparisons) randomising 1651 preterm infants. Literature searches in 2018 identified one new study for inclusion. No new on-going trials were identified and no studies used darbepoetin.Most included trials were of small sample size. The meta-analysis showed a significant effect on the use of one or more RBC transfusions (21 studies (n = 1202); typical risk ratio (RR) 0.72, 95% confidence interval (CI) 0.65 to 0.79; typical risk difference (RD) -0.17, 95% CI -0.22 to -0.12; typical number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 5 to 8). There was moderate heterogeneity for this outcome (RR I(2) = 66%; RD I(2) = 58%). The quality of the evidence was very low. We obtained similar results in secondary analyses based on different combinations of high/low doses of EPO and iron supplementation. There was no significant reduction in the total volume (mL/kg) of blood transfused per infant (typical mean difference (MD) -1.6 mL/kg, 95% CI -5.8 to 2.6); 5 studies, 197 infants). There was high heterogeneity for this outcome (I(2) = 92%). There was a significant reduction in the number of transfusions per infant (11 studies enrolling 817 infants; typical MD -0.22, 95% CI -0.38 to -0.06). There was high heterogeneity for this outcome (I(2) = 94%).Three studies including 404 infants reported on retinopathy of prematurity (ROP) (all stages or stage not reported), with a typical RR 1.27 (95% CI 0.99 to 1.64) and a typical RD of 0.09 (95% CI -0.00 to 0.18). There was high heterogeneity for this outcome for both RR (I(2) = 83%) and RD (I(2) = 82%). The quality of the evidence was very low.Three trials enrolling 442 infants reported on ROP (stage ≥ 3). The typical RR was 1.73 (95% CI 0.92 to 3.24) and the typical RD was 0.05 (95% CI -0.01 to 0.10). There was no heterogeneity for this outcome for RR (I(2) = 18%) but high heterogeneity for RD (I(2) = 79%). The quality of the evidence was very low.There were no significant differences in other clinical outcomes including mortality and necrotising enterocolitis. For the outcomes of mortality and necrotising enterocolitis, the quality of the evidence was moderate. Long-term neurodevelopmental outcomes were not reported. AUTHORS' CONCLUSIONS Late administration of EPO reduces the use of one or more RBC transfusions, the number of RBC transfusions per infant (< 1 transfusion per infant) but not the total volume (mL/kg) of RBCs transfused per infant. Any donor exposure is likely not avoided as most studies included infants who had received RBC transfusions prior to trial entry. Late EPO does not significantly reduce or increase any clinically important adverse outcomes except for a trend in increased risk for ROP. Further research of the use of late EPO treatment, to prevent donor exposure, is not indicated. Research efforts should focus on limiting donor exposure during the first few days of life in sick neonates, when RBC requirements are most likely to be required and cannot be prevented by late EPO treatment. The use of satellite packs (dividing one unit of donor blood into many smaller aliquots) may reduce donor exposure.
-
9.
Interventions to prevent iatrogenic anemia: a Laboratory Medicine Best Practices systematic review
Whitehead NS, Williams LO, Meleth S, Kennedy SM, Ubaka-Blackmoore N, Geaghan SM, Nichols JH, Carroll P, McEvoy MT, Gayken J, et al
Critical care (London, England). 2019;23(1):278
Abstract
BACKGROUND As many as 90% of patients develop anemia by their third day in an intensive care unit (ICU). We evaluated the efficacy of interventions to reduce phlebotomy-related blood loss on the volume of blood lost, hemoglobin levels, transfusions, and incidence of anemia. METHODS We conducted a systematic review and meta-analysis using the Laboratory Medicine Best Practices (LMBP) systematic review methods for rating study quality and assessing the body of evidence. Searches of PubMed, Embase, Cochrane, Web of Science, PsychINFO, and CINAHL identified 2564 published references. We included studies of the impact of interventions to reduce phlebotomy-related blood loss on blood loss, hemoglobin levels, transfusions, or anemia among hospital inpatients. We excluded studies not published in English and studies that did not have a comparison group, did not report an outcome of interest, or were rated as poor quality. Twenty-one studies met these criteria. We conducted a meta-analysis if > 2 homogenous studies reported sufficient information for analysis. RESULTS We found moderate, consistent evidence that devices that return blood from flushing venous or arterial lines to the patient reduced blood loss by approximately 25% in both neonatal ICU (NICU) and adult ICU patients [pooled estimate in adults, 24.7 (95% CI = 12.1-37.3)]. Bundled interventions that included blood conservation devices appeared to reduce blood loss by at least 25% (suggestive evidence). The evidence was insufficient to determine if these devices reduced hemoglobin decline or risk of anemia. The evidence suggested that small volume tubes reduced the risk of anemia, but was insufficient to determine if they affected the volume of blood loss or the rate of hemoglobin decline. CONCLUSIONS Moderate, consistent evidence indicated that devices that return blood from testing or flushing lines to the patient reduce the volume of blood loss by approximately 25% among ICU patients. The results of this systematic review support the use of blood conservation systems with arterial or venous catheters to eliminate blood waste when drawing blood for testing. The evidence was insufficient to conclude the devices impacted hemoglobin levels or transfusion rates. The use of small volume tubes may reduce the risk of anemia.
-
10.
Clinical outcomes related to the gastrointestinal trophic effects of erythropoietin in preterm neonates: a systematic review and meta-analysis
Ananthan A, Balasubramanian H, Rao S, Patole S
Advances in Nutrition (Bethesda, Md.). 2018;9((3)):238-246.
-
-
Free full text
-
Abstract
Erythropoietin (EPO) plays an important role in the development and maturation of the gastrointestinal tract. Recombinant EPO (rEPO) has been used to prevent anemia of prematurity. The gastrointestinal trophic effects of EPO may reduce feeding intolerance and necrotizing enterocolitis (NEC) in preterm neonates. The aim of this systematic review of randomized controlled trials (RCTs) was to evaluate the effects of rEPO on clinical outcomes such as feeding intolerance, stage II or higher NEC, any stage NEC, sepsis, retinopathy of prematurity, and bronchopulmonary dysplasia in preterm neonates. Twenty-five RCTs (intravenous: 13; subcutaneous: 10; enteral: 2; n = 4025) were eligible for inclusion. Meta-analysis of data from 17 RCTs (rEPO compared with placebo) with the use of a fixed-effects model showed no significant effect of rEPO on stage II or higher NEC (RR: 0.87; 95% CI: 0.64, 1.19; P = 0.39). Meta-analysis of data from 25 RCTs (rEPO compared with placebo) showed that rEPO significantly decreased the risk of any stage NEC [cases/total sample: 120/2058 (5.83%) compared with 146/1967 (7.42%); RR: 0.77; 95% CI: 0.61, 0.97; P = 0.03]. Only one RCT reported on time to full feedings. Meta-analysis of data from 15 RCTs showed a significant reduction in late-onset sepsis after rEPO administration (RR: 0.81; 95% CI: 0.71, 0.94; P = 0.004). Meta-analysis of 13 RCTs showed no significant effect of rEPO on mortality, retinopathy of prematurity, and bronchopulmonary dysplasia. Prophylactic rEPO had no effect on stage II or higher NEC, but it reduced any stage NEC, probably by reducing feeding intolerance, which is often labeled as stage I NEC. Adequately powered RCTs are required to confirm these findings.