-
1.
Guidelines on the use of irradiated blood components
Foukaneli, T., Kerr, P., Bolton-Maggs, P. H. B., Cardigan, R., Coles, A., Gennery, A., Jane, D., Kumararatne, D., Manson, A., New, H. V., et al
British Journal of Haematology. 2020;191(5):704-724
-
2.
Prophylaxis of thromboembolism during therapy with asparaginase in adults with acute lymphoblastic leukaemia
Rank CU, Lynggaard LS, Als-Nielsen B, Stock W, Toft N, Nielsen OJ, Frandsen TL, Tuckuviene R, Schmiegelow K
The Cochrane database of systematic reviews. 2020;10:Cd013399
Abstract
BACKGROUND The risk of venous thromboembolism is increased in adults and enhanced by asparaginase-based chemotherapy, and venous thromboembolism introduces a secondary risk of treatment delay and premature discontinuation of key anti-leukaemic agents, potentially compromising survival. Yet, the trade-off between benefits and harms of primary thromboprophylaxis in adults with acute lymphoblastic leukaemia (ALL) treated according to asparaginase-based regimens is uncertain. OBJECTIVES The primary objectives were to assess the benefits and harms of primary thromboprophylaxis for first-time symptomatic venous thromboembolism in adults with ALL receiving asparaginase-based therapy compared with placebo or no thromboprophylaxis. The secondary objectives were to compare the benefits and harms of different groups of primary systemic thromboprophylaxis by stratifying the main results per type of drug (heparins, vitamin K antagonists, synthetic pentasaccharides, parenteral direct thrombin inhibitors, direct oral anticoagulants, and blood-derived products for antithrombin substitution). SEARCH METHODS We conducted a comprehensive literature search on 02 June 2020, with no language restrictions, including (1) electronic searches of Pubmed/MEDLINE; Embase/Ovid; Scopus/Elsevier; Web of Science Core Collection/Clarivate Analytics; and Cochrane Central Register of Controlled Trials (CENTRAL) and (2) handsearches of (i) reference lists of identified studies and related reviews; (ii) clinical trials registries (ClinicalTrials.gov registry; the International Standard Randomized Controlled Trial Number (ISRCTN) registry; the World Health Organisation's International Clinical Trials Registry Platform (ICTRP); and pharmaceutical manufacturers of asparaginase including Servier, Takeda, Jazz Pharmaceuticals, Ohara Pharmaceuticals, and Kyowa Pharmaceuticals), and (iii) conference proceedings (from the annual meetings of the American Society of Hematology (ASH); the European Haematology Association (EHA); the American Society of Clinical Oncology (ASCO); and the International Society on Thrombosis and Haemostasis (ISTH)). We conducted all searches from 1970 (the time of introduction of asparaginase in ALL treatment). We contacted the authors of relevant studies to identify any unpublished material, missing data, or information regarding ongoing studies. SELECTION CRITERIA Randomised controlled trials (RCTs); including quasi-randomised, controlled clinical, cross-over, and cluster-randomised trial designs) comparing any parenteral/oral preemptive anticoagulant or mechanical intervention with placebo or no thromboprophylaxis, or comparing two different pre-emptive anticoagulant interventions in adults aged at least 18 years with ALL treated according to asparaginase-based chemotherapy regimens. For the description of harms, non-randomised observational studies with a control group were eligible for inclusion. DATA COLLECTION AND ANALYSIS Using a standardised data collection form, two review authors independently screened and selected studies, extracted data, assessed risk of bias for each outcome using standardised tools (RoB 2.0 tool for RCTs and ROBINS-I tool for non-randomised studies) and the certainty of evidence for each outcome using the GRADE approach. Primary outcomes included first-time symptomatic venous thromboembolism, all-cause mortality, and major bleeding. Secondary outcomes included asymptomatic venous thromboembolism, venous thromboembolism-related mortality, adverse events (i.e. clinically relevant non-major bleeding and heparin-induced thrombocytopenia for trials using heparins), and quality of life. Analyses were performed according to the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions. For non-randomised studies, we evaluated all studies (including studies judged to be at critical risk of bias in at least one of the ROBINS-I domains) in a sensitivity analysis exploring confounding. MAIN RESULTS We identified 23 non-randomised studies that met the inclusion criteria of this review, of which 10 studies provided no outcome data for adults with ALL. We included the remaining 13 studies in the 'Risk of bias' assessment, in which we identified invalid control group definition in two studies and judged outcomes of nine studies to be at critical risk of bias in at least one of the ROBINS-I domains and outcomes of two studies at serious risk of bias. We did not assess the benefits of thromboprophylaxis, as no RCTs were included. In the main descriptive analysis of harms, we included two retrospective non-randomised studies with outcomes judged to be at serious risk of bias. One study evaluated antithrombin concentrates compared to no antithrombin concentrates. We are uncertain whether antithrombin concentrates have an effect on all-cause mortality (risk ratio (RR) 0.55, 95% confidence interval (CI) 0.26 to 1.19 (intention-to-treat analysis); one study, 40 participants; very low certainty of evidence). We are uncertain whether antithrombin concentrates have an effect on venous thromboembolism-related mortality (RR 0.10, 95% CI 0.01 to 1.94 (intention-to-treat analysis); one study, 40 participants; very low certainty of evidence). We do not know whether antithrombin concentrates have an effect on major bleeding, clinically relevant non-major bleeding, and quality of life in adults with ALL treated with asparaginase-based chemotherapy, as data were insufficient. The remaining study (224 participants) evaluated prophylaxis with low-molecular-weight heparin versus no prophylaxis. However, this study reported insufficient data regarding harms including all-cause mortality, major bleeding, venous thromboembolism-related mortality, clinically relevant non-major bleeding, heparin-induced thrombocytopenia, and quality of life. In the sensitivity analysis of harms, exploring the effect of confounding, we also included nine non-randomised studies with outcomes judged to be at critical risk of bias primarily due to uncontrolled confounding. Three studies (179 participants) evaluated the effect of antithrombin concentrates and six studies (1224 participants) evaluated the effect of prophylaxis with different types of heparins. When analysing all-cause mortality; venous thromboembolism-related mortality; and major bleeding (studies of heparin only) including all studies with extractable outcomes for each comparison (antithrombin and low-molecular-weight heparin), we observed small study sizes; few events; wide CIs crossing the line of no effect; and substantial heterogeneity by visual inspection of the forest plots. Although the observed heterogeneity could arise through the inclusion of a small number of studies with differences in participants; interventions; and outcome assessments, the likelihood that bias due to uncontrolled confounding was the cause of heterogeneity is inevitable. Subgroup analyses were not possible due to insufficient data. AUTHORS' CONCLUSIONS We do not know from the currently available evidence, if thromboprophylaxis used for adults with ALL treated according to asparaginase-based regimens is associated with clinically appreciable benefits and acceptable harms. The existing research on this question is solely of non-randomised design, seriously to critically confounded, and underpowered with substantial imprecision. Any estimates of effect based on the existing insufficient evidence is very uncertain and is likely to change with future research.
-
3.
Restrictive versus liberal red blood cell transfusion strategies for people with haematological malignancies treated with intensive chemotherapy or radiotherapy, or both, with or without haematopoietic stem cell support
Estcourt LJ, Malouf R, Trivella M, Fergusson DA, Hopewell S, Murphy MF
The Cochrane Database of Systematic Reviews. 2017;((1)):CD011305.
-
-
-
Free full text
-
Full text
-
Editor's Choice
Abstract
BACKGROUND Many people diagnosed with haematological malignancies experience anaemia, and red blood cell (RBC) transfusion plays an essential supportive role in their management. Different strategies have been developed for RBC transfusions. A restrictive transfusion strategy seeks to maintain a lower haemoglobin level (usually between 70 g/L to 90 g/L) with a trigger for transfusion when the haemoglobin drops below 70 g/L), whereas a liberal transfusion strategy aims to maintain a higher haemoglobin (usually between 100 g/L to 120 g/L, with a threshold for transfusion when haemoglobin drops below 100 g/L). In people undergoing surgery or who have been admitted to intensive care a restrictive transfusion strategy has been shown to be safe and in some cases safer than a liberal transfusion strategy. However, it is not known whether it is safe in people with haematological malignancies. OBJECTIVES To determine the efficacy and safety of restrictive versus liberal RBC transfusion strategies for people diagnosed with haematological malignancies treated with intensive chemotherapy or radiotherapy, or both, with or without a haematopoietic stem cell transplant (HSCT). SEARCH METHODS We searched for randomised controlled trials (RCTs) and non-randomised trials (NRS) in MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1982), Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 6), and 10 other databases (including four trial registries) to 15 June 2016. We also searched grey literature and contacted experts in transfusion for additional trials. There was no restriction on language, date or publication status. SELECTION CRITERIA We included RCTs and prospective NRS that evaluated a restrictive compared with a liberal RBC transfusion strategy in children or adults with malignant haematological disorders or undergoing HSCT. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. MAIN RESULTS We identified six studies eligible for inclusion in this review; five RCTs and one NRS. Three completed RCTs (156 participants), one completed NRS (84 participants), and two ongoing RCTs. We identified one additional RCT awaiting classification. The completed studies were conducted between 1997 and 2015 and had a mean follow-up from 31 days to 2 years. One study included children receiving a HSCT (six participants), the other three studies only included adults: 218 participants with acute leukaemia receiving chemotherapy, and 16 with a haematological malignancy receiving a HSCT. The restrictive strategies varied from 70 g/L to 90 g/L. The liberal strategies also varied from 80 g/L to 120 g/L.Based on the GRADE rating methodology the overall quality of the included studies was very low to low across different outcomes. None of the included studies were free from bias for all 'Risk of bias' domains. One of the three RCTs was discontinued early for safety concerns after recruiting only six children, all three participants in the liberal group developed veno-occlusive disease (VOD). Evidence from RCTsA restrictive RBC transfusion policy may make little or no difference to: the number of participants who died within 100 days (two trials, 95 participants (RR: 0.25, 95% CI 0.02 to 2.69, low-quality evidence); the number of participants who experienced any bleeding (two studies, 149 participants; RR:0.93, 95% CI 0.73 to 1.18, low-quality evidence), or clinically significant bleeding (two studies, 149 participants, RR: 1.03, 95% CI 0.75 to 1.43, low-quality evidence); the number of participants who required RBC transfusions (three trials; 155 participants: RR: 0.97, 95% CI 0.90 to 1.05, low-quality evidence); or the length of hospital stay (restrictive median 35.5 days (interquartile range (IQR): 31.2 to 43.8); liberal 36 days (IQR: 29.2 to 44), low-quality evidence).We are uncertain whether the restrictive RBC transfusion strategy: decreases quality of life (one trial, 89 participants, fatigue score: restrictive median 4.8 (IQR 4 to 5.2); liberal m
PICO Summary
Population
Children or adults with malignant haematological disorders treated with intensive chemotherapy or radiotherapy, or both, with or without a haematopoietic stem cell transplant (6 studies).
Intervention
Restrictive red blood cell (RBC) transfusion strategy.
Comparison
Liberal RBC transfusion strategy.
Outcome
Evidence from randomised controlled trials showed that a restrictive RBC transfusion policy may make little or no difference to: the number of participants who died within 100 days (RR: 0.25); the number of participants who experienced any bleeding (RR: 0.93), or clinically significant bleeding (RR: 1.03); the number of participants who required RBC transfusions (RR: 0.97); or the length of hospital stay. It was uncertain whether the restrictive RBC transfusion strategy: decreases quality of life, or reduces the risk of developing any serious infection (RR: 1.23).
-
4.
Alternatives, and adjuncts, to prophylactic platelet transfusion for people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation
Desborough M, Estcourt LJ, Doree C, Trivella M, Hopewell S, Stanworth SJ, Murphy MF
The Cochrane Database of Systematic Reviews. 2016;((8)):CD010982.
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in people with thrombocytopenia. Although considerable advances have been made in platelet transfusion therapy since the mid-1970s, some areas continue to provoke debate especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding. OBJECTIVES To determine whether agents that can be used as alternatives, or adjuncts, to platelet transfusions for people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation are safe and effective at preventing bleeding. SEARCH METHODS We searched 11 bibliographic databases and four ongoing trials databases including the Cochrane Central Register of Controlled Trials (CENTRAL, 2016, Issue 4), MEDLINE (OvidSP, 1946 to 19 May 2016), Embase (OvidSP, 1974 to 19 May 2016), PubMed (e-publications only: searched 19 May 2016), ClinicalTrials.gov, World Health Organization (WHO) ICTRP and the ISRCTN Register (searched 19 May 2016). SELECTION CRITERIA We included randomised controlled trials in people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation who were allocated to either an alternative to platelet transfusion (artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, recombinant activated factor VII, desmopressin (DDAVP), or thrombopoietin (TPO) mimetics) or a comparator (placebo, standard care or platelet transfusion). We excluded studies of antifibrinolytic drugs, as they were the focus of another review. DATA COLLECTION AND ANALYSIS Two review authors screened all electronically derived citations and abstracts of papers identified by the review search strategy. Two review authors assessed risk of bias in the included studies and extracted data independently. MAIN RESULTS We identified 16 eligible trials. Four trials are ongoing and two have been completed but the results have not yet been published (trial completion dates: April 2012 to February 2017). Therefore, the review included 10 trials in eight references with 554 participants. Six trials (336 participants) only included participants with acute myeloid leukaemia undergoing intensive chemotherapy, two trials (38 participants) included participants with lymphoma undergoing intensive chemotherapy and two trials (180 participants) reported participants undergoing allogeneic stem cell transplantation. Men and women were equally well represented in the trials. The age range of participants included in the trials was from 16 years to 81 years. All trials took place in high-income countries. The manufacturers of the agent sponsored eight trials that were under investigation, and two trials did not report their source of funding.No trials assessed artificial platelet substitutes, fibrinogen concentrate, recombinant activated factor VII or desmopressin.Nine trials compared a TPO mimetic to placebo or standard care; seven of these used pegylated recombinant human megakaryocyte growth and differentiation factor (PEG-rHuMGDF) and two used recombinant human thrombopoietin (rhTPO).One trial compared platelet-poor plasma to platelet transfusion.We considered that all the trials included in this review were at high risk of bias and meta-analysis was not possible in seven trials due to problems with the way data were reported.We are very uncertain whether TPO mimetics reduce the number of participants with any bleeding episode (odds ratio (OR) 0.40, 95% confidence interval (CI) 0.10 to 1.62, one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce the risk of a life-threatening bleed after 30 days (OR 1.46, 95% CI 0.06 to 33.14, three trials, 209 participants, very low quality evidence); or after 90 days (OR 1.00, 95% CI 0.06 to 16.37, one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce platelet transfusion requirements after 30 days (mean difference -3.00 units, 95% CI
-
5.
A therapeutic-only versus prophylactic platelet transfusion strategy for preventing bleeding in patients with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation
Crighton GL, Estcourt LJ, Wood EM, Trivella M, Doree C, Stanworth S
Cochrane Database of Systematic Reviews.. 2015;((9)):CD010981.
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in thrombocytopenic patients with bone marrow failure. Although considerable advances have been made in platelet transfusion therapy in the last 40 years, some areas continue to provoke debate, especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding.This is an update of a Cochrane review first published in 2004 and updated in 2012 that addressed four separate questions: therapeutic-only versus prophylactic platelet transfusion policy; prophylactic platelet transfusion threshold; prophylactic platelet transfusion dose; and platelet transfusions compared to alternative treatments. We have now split this review into four smaller reviews looking at these questions individually; this review is the first part of the original review. OBJECTIVES To determine whether a therapeutic-only platelet transfusion policy (platelet transfusions given when patient bleeds) is as effective and safe as a prophylactic platelet transfusion policy (platelet transfusions given to prevent bleeding, usually when the platelet count falls below a given trigger level) in patients with haematological disorders undergoing myelosuppressive chemotherapy or stem cell transplantation. SEARCH METHODS We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (Cochrane Library 2015, Issue 6), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950) and ongoing trial databases to 23 July 2015. SELECTION CRITERIA RCTs involving transfusions of platelet concentrates prepared either from individual units of whole blood or by apheresis, and given to prevent or treat bleeding in patients with malignant haematological disorders receiving myelosuppressive chemotherapy or undergoing HSCT. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by The Cochrane Collaboration. MAIN RESULTS We identified seven RCTs that compared therapeutic platelet transfusions to prophylactic platelet transfusions in haematology patients undergoing myelosuppressive chemotherapy or HSCT. One trial is still ongoing, leaving six trials eligible with a total of 1195 participants. These trials were conducted between 1978 and 2013 and enrolled participants from fairly comparable patient populations. We were able to critically appraise five of these studies, which contained separate data for each arm, and were unable to perform quantitative analysis on one study that did not report the numbers of participants in each treatment arm.Overall the quality of evidence per outcome was low to moderate according to the GRADE approach. None of the included studies were at low risk of bias in every domain, and all the studies identified had some threats to validity. We deemed only one study to be at low risk of bias in all domains other than blinding.Two RCTs (801 participants) reported at least one bleeding episode within 30 days of the start of the study. We were unable to perform a meta-analysis due to considerable statistical heterogeneity between studies. The statistical heterogeneity seen may relate to the different methods used in studies for the assessment and grading of bleeding. The underlying patient diagnostic and treatment categories also appeared to have some effect on bleeding risk. Individually these studies showed a similar effect, that a therapeutic-only platelet transfusion strategy was associated with an increased risk of clinically significant bleeding compared with a prophylactic platelet transfusion policy. Number of days with a clinically significant bleeding event per participant was higher in the therapeutic-only group than in the prophylactic group (one RCT; 600 participants; mean difference 0.50, 95% confidence interval (CI) 0.10 to 0.90; moderate-quality evidence). There was insufficient evidence to determine whether there was any difference in the number of participants with severe or
-
6.
Comparison of different platelet count thresholds to guide administration of prophylactic platelet transfusion for preventing bleeding in people with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation
Estcourt LJ, Stanworth SJ, Doree C, Hopewell S, Trivella M, Murphy MF
Cochrane Database of Systematic Reviews.. 2015;((11)):CD010983.
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in people who are thrombocytopenic due to bone marrow failure. Although considerable advances have been made in platelet transfusion therapy in the last 40 years, some areas continue to provoke debate, especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding.This is an update of a Cochrane review first published in 2004, and previously updated in 2012 that addressed four separate questions: prophylactic versus therapeutic-only platelet transfusion policy; prophylactic platelet transfusion threshold; prophylactic platelet transfusion dose; and platelet transfusions compared to alternative treatments. This review has now been split into four smaller reviews looking at these questions individually; this review compares prophylactic platelet transfusion thresholds. OBJECTIVES To determine whether different platelet transfusion thresholds for administration of prophylactic platelet transfusions (platelet transfusions given to prevent bleeding) affect the efficacy and safety of prophylactic platelet transfusions in preventing bleeding in people with haematological disorders undergoing myelosuppressive chemotherapy or haematopoietic stem cell transplantation (HSCT). SEARCH METHODS We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (Cochrane Library 2015, Issue 6, 23 July 2015), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 23 July 2015. SELECTION CRITERIA We included RCTs involving transfusions of platelet concentrates, prepared either from individual units of whole blood or by apheresis, and given to prevent bleeding in people with haematological disorders (receiving myelosuppressive chemotherapy or undergoing HSCT) that compared different thresholds for administration of prophylactic platelet transfusions (low trigger (5 x 10(9)/L); standard trigger (10 x 10(9)/L); higher trigger (20 x 10(9)/L, 30 x 10(9)/L, 50 x 10(9)/L); or alternative platelet trigger (for example platelet mass)). DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. MAIN RESULTS Three trials met our predefined inclusion criteria and were included for analysis in the review (499 participants). All three trials compared a standard trigger (10 x 10(9)/L) versus a higher trigger (20 x 10(9)/L or 30 x 10(9)/L). None of the trials compared a low trigger versus a standard trigger or an alternative platelet trigger. The trials were conducted between 1991 and 2001 and enrolled participants from fairly comparable patient populations.The original review contained four trials (658 participants); in the previous update of this review we excluded one trial (159 participants) because fewer than 80% of participants had a haematological disorder. We identified no new trials in this update of the review.Overall, the methodological quality of the studies was low across different outcomes according to GRADE methodology. None of the included studies were at low risk of bias in every domain, and all the included studies had some threats to validity.Three studies reported the number of participants with at least one clinically significant bleeding episode within 30 days from the start of the study. There was no evidence of a difference in the number of participants with a clinically significant bleeding episode between the standard and higher trigger groups (three studies; 499 participants; risk ratio (RR) 1.35, 95% confidence interval (CI) 0.95 to 1.90; low-quality evidence).One study reported the number of days with a clinically significant bleeding event (adjusted for repeated measures). There was no evidence of a difference in the number of days of bleeding per participant between the standard and higher trigger groups (one study; 255 participants; relative proportion of days with World Health Organization
-
7.
Prophylaxis for venous thromboembolism in patients treated for acute lymphoblastic leukemia - a systematic review
Lauw M, Hubers L, Barco S, Van Ommen C, Hutten B, Biemond B, Middeldorp S
Haematologica. 2013;98((S1):):441.. Abstract No. P1076.
-
8.
Prophylactic platelet transfusion for prevention of bleeding in patients with haematological disorders after chemotherapy and stem cell transplantation
Estcourt L, Stanworth S, Doree C, Hopewell S, Murphy MF, Tinmouth A, Heddle N
Cochrane Database of Systematic Reviews. 2012;5:CD004269
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in thrombocytopenic patients with bone marrow failure. Although considerable advances have been made in platelet transfusion therapy in the last 40 years, some areas continue to provoke debate especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding. OBJECTIVES To determine the most effective use of platelet transfusion for the prevention of bleeding in patients with haematological disorders undergoing chemotherapy or stem cell transplantation. SEARCH METHODS This is an update of a Cochrane review first published in 2004. We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL Issue 4, 2011), MEDLINE (1950 to Nov 2011), EMBASE (1980 to Nov 2011) and CINAHL (1982 to Nov 2011), using adaptations of the Cochrane RCT search filter, the UKBTS/SRI Transfusion Evidence Library, and ongoing trial databases to 10 November 2011. SELECTION CRITERIA RCTs involving transfusions of platelet concentrates, prepared either from individual units of whole blood or by apheresis, and given to prevent bleeding in patients with haematological disorders. Four different types of prophylactic platelet transfusion trial were included. DATA COLLECTION AND ANALYSIS In the original review one author initially screened all electronically derived citations and abstracts of papers, identified by the review search strategy, for relevancy. Two authors performed this task in the updated review. Two authors independently assessed the full text of all potentially relevant trials for eligibility. Two authors completed data extraction independently. We requested missing data from the original investigators as appropriate. MAIN RESULTS There were 18 trials that were eligible for inclusion, five of these were still ongoing.Thirteen completed published trials (2331 participants) were included for analysis in the review. The original review contained nine trials (718 participants). This updated review includes six new trials (1818 participants).Two trials (205 participants) in the original review are now excluded because fewer than 80% of participants had a haematological disorder.The four different types of prophylactic platelet transfusion trial, that were the focus of this review, were included within these thirteen trials.Three trials compared prophylactic platelet transfusions versus therapeutic-only platelet transfusions. There was no statistical difference between the number of participants with clinically significant bleeding in the therapeutic and prophylactic arms but the confidence interval was wide (RR 1.66; 95% CI 0.9 to 3.04).The time taken for a clinically significant bleed to occur was longer in the prophylactic platelet transfusion arm. There was a clear reduction in platelet transfusion usage in the therapeutic arm. There was no statistical difference between the number of participants in the therapeutic and prophylactic arms with platelet refractoriness, the only adverse event reported.Three trials compared different platelet count thresholds to trigger administration of prophylactic platelet transfusions. No statistical difference was seen in the number of participants with clinically significant bleeding (RR 1.35; 95% CI 0.95 to 1.9), however, this type of bleeding occurred on fewer days in the group of patients transfused at a higher platelet count threshold (RR 1.72; 95% CI 1.33 to 2.22).The lack of a difference seen for the number of participants with clinically significant bleeding may be due to the studies, in combination, having insufficient power to demonstrate a difference, or due to masking of the effect by a higher number of protocol violations in the groups of patients with a lower platelet count threshold. Using a lower platelet count threshold led to a significant reduction in the number of platelet transfusions used. There were no statistical differences in the number of adverse events reported between the
-
9.
Association between red blood cell transfusions and development of non-Hodgkin lymphoma: a meta-analysis of observational studies
Castillo JJ, Dalia S, Pascual SK
Blood. 2010;116((16):):2897-907.
Abstract
The incidence of non-Hodgkin lymphoma (NHL) has increased steadily for the past few decades. Previous studies have suggested an association between blood transfusions and NHL. The main objective of this study was to evaluate this relationship with a meta-analysis of observational studies. A literature search was undertaken, looking for case-control and cohort studies evaluating the risk of developing NHL in persons who received allogeneic blood transfusions; 14 studies were included. Outcome was calculated and reported as relative risk (RR). Heterogeneity was assessed with Cochrane Q and I(2) statistics. Dissemination bias was evaluated by funnel plot visualization and trim-and-fill analysis. Quality assessment was performed with the Newcastle-Ottawa scale. Our analysis showed a RR of developing NHL of 1.05 (95% CI, 0.89-1.25; P = .42) and 1.34 (95% CI, 1.15-1.55; P < .01) in case-control and cohort studies, respectively. When pooling all studies, RR was 1.2 (95% CI, 1.07-1.35; P < .01). In subset analysis, RR of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) was 1.66 (95% CI, 1.08-2.56; P = .02). The RR of NHL was elevated in both men and women and in persons receiving transfusions either before or after 1992. Blood transfusions appear to increase the risk of developing NHL; however, the risk of CLL/SLL appears higher than for other NHL subtypes.
-
10.
Methodologic issues in the use of bleeding as an outcome in transfusion medicine studies
Heddle NM, Cook RJ, Webert KE, Sigouin C, Rebulla P
Transfusion. 2003;43((6):):742-752.
Abstract
BACKGROUND Prophylactic platelet transfusions are given to thrombocytopenic patients to prevent bleeding. The benefit of platelet transfusions has frequently been assessed by measuring the count increment; however, more recently, an assessment of bleeding has been used because it is a more clinically relevant outcome measure. The purpose of this study was to identify platelet transfusion trigger studies that used bleeding as an outcome measure, compare and contrast methods used to document bleeding and analyze bleeding outcomes, and identify and discuss methodologic issues to consider when bleeding is used as a study outcome. STUDY DESIGN AND METHODS A systematic search to identify platelet transfusion trigger studies was performed. Relevant articles were reviewed to identify how bleeding data was captured and analyzed, and methodologic considerations were identified. RESULTS Seven articles meeting the predefined entry criteria were identified. Methods used to document bleeding included chart review and clinical assessment. The frequency of assessment and the type of personnel performing the assessment were variable. Four approaches to analysis were identified: descriptive; comparison of the proportions of patients having at least one bleed; comparison of patient days with bleeding expressed as a proportion of the total days at risk of bleeding; and time-to-event (first bleed) analysis. CONCLUSION Methodologic issues for consideration when designing a clinical study with bleeding as the outcome measure included approaches to minimize bias in the documentation and classification of bleeding and selection of an analysis approach that is appropriate to the question being asked. The need for development of a valid and reliable bleeding scale was also identified.