1 result
Filters • 4
Sort By
Results Per Page
Filters
1 result
4
Download the following citations:
Email the following citations:
Print the following citations:
Editor's Choice
  • Hariri G
  • Collet L
  • Duarte L
  • Martin GL
  • Resche-Rigon M
  • et al.
Crit Care. 2023 Sep 12;27(1):354 doi: 10.1186/s13054-023-04640-1.
POPULATION:

Adult patients undergoing cardiac surgery such as coronary artery bypass grafting and/or valve surgery (86 randomised controlled trials (RCTs) n= 25,855).

INTERVENTION:

Non-pharmacological interventions to reduce the incidence of cardiac surgery-associated acute kidney injury (CSA-AKI): Goal directed perfusion (GDP), pulsatile flow during cardiopulmonary bypass (CPB), minimally invasive extracorporeal circulation (MECC), epidural analgesia, remote ischemic preconditioning (RIPc), tight glycemic control, kidney disease improving global outcomes care bundle, hyperoxia during CPB, restrictive transfusion strategy, high target arterial pressure.

COMPARISON:

Usual care.

OUTCOME:

No intervention had high-quality evidence to reduce CSA-AKI. From the included studies, the most frequent intervention was RIPc (31 RCTs, n= 7,738), MECC, (14 RCTs, n= 1,617) and pulsatile blood flow during CPB (10 RCTs, n= 1,993). Three interventions were associated with a significantly reduced risk of CSA-AKI: GDP, RIPc and pulsatile flow during CPB.

BACKGROUND:

Cardiac surgery-associated acute kidney injury (CSA-AKI) is frequent. While two network meta-analyses assessed the impact of pharmacological interventions to prevent CSA-AKI, none focused on non-pharmacological interventions. We aim to assess the effectiveness of non-pharmacological interventions to reduce the incidence of CSA-AKI.

METHODS:

We searched PubMed, Embase, Central and clinical trial registries from January 1, 2004 (first consensus definition of AKI) to July 1, 2023. Additionally, we conducted manual screening of abstracts of major anesthesia and intensive care conferences over the last 5 years and reference lists of relevant studies. We selected all randomized controlled trials (RCTs) assessing a non-pharmacological intervention to reduce the incidence of CSA-AKI, without language restriction. We excluded RCTs of heart transplantation or involving a pediatric population. The primary outcome variable was CSA-AKI. Two reviewers independently identified trials, extracted data and assessed risk of bias. Random-effects meta-analyses were conducted to calculate risk ratios (RRs) with 95% confidence intervals (CIs). We used the Grading of Recommendations Assessment, Development, and Evaluation to assess the quality of evidence.

RESULTS:

We included 86 trials (25,855 patients) evaluating 10 non-pharmacological interventions to reduce the incidence of CSA-AKI. No intervention had high-quality evidence to reduce CSA-AKI. Two interventions were associated with a significant reduction in CSA-AKI incidence, with moderate quality of evidence: goal-directed perfusion (RR, 0.55 [95% CI 0.40-0.76], I2 = 0%; Phet = 0.44) and remote ischemic preconditioning (RR, 0.86 [0.78-0.95]; I2 = 23%; Phet = 0.07). Pulsatile flow during cardiopulmonary bypass was associated with a significant reduction in CSA-AKI incidence but with very low quality of evidence (RR = 0.69 [0.48; 0.99]; I2 = 53%; Phet < 0.01). We found high quality of evidence for lack of effect of restrictive transfusion strategy (RR, 1.02 [95% CI 0.92; 1.12; Phet = 0.67; I2 = 3%) and tight glycemic control (RR, 0.86 [95% CI 0.55; 1.35]; Phet = 0.25; I2 = 26%).

CONCLUSIONS:

Two non-pharmacological interventions are likely to reduce CSA-AKI incidence, with moderate quality of evidence: goal-directed perfusion and remote ischemic preconditioning.