1.
Prehospital low titer group O whole blood is feasible and safe: Results of a prospective randomized pilot trial
Guyette FX, Zenati M, Triulzi DJ, Yazer MH, Skroczky H, Early BJ, Adams PW, Brown JB, Alarcon L, Neal MD, et al
The journal of trauma and acute care surgery. 2022
-
-
-
Free full text
-
-
Editor's Choice
Abstract
INTRODUCTION Low titer group O whole blood (LTOWB) resuscitation is increasingly common in both military and civilian settings. Data regarding the safety and efficacy of prehospital LTOWB remains limited. METHODS We performed a single center, prospective, cluster randomized, prehospital thru in-hospital whole blood pilot trial for injured air medical patients. We compared standard prehospital air medical care including red cell transfusion and crystalloids followed by in-hospital component transfusion to prehospital and in-hospital LTOWB resuscitation. Prehospital vital signs were used as inclusion criteria (SBP ≤ 90 mmHg and HR ≥ 108 bpm) or (SBP ≤ 70 mmHg) for patients at risk of hemorrhage. Primary outcome was feasibility. Secondary outcomes included 28-day and 24 hour mortality, multiple organ failure, nosocomial infection, 24 hr transfusion requirements and arrival coagulation parameters. RESULTS Between November 2018 thru October 2020, 86 injured patients were cluster randomized by helicopter base. The trial has halted early at 77% enrollment. Overall, 28-day mortality for the cohort was 26%. Injured patients randomized to prehospital LTOWB (n = 40) relative to standard care (n = 46) were similar in demographics and injury characteristics. Intent to treat Kaplan-Meier survival analysis demonstrated no statistical mortality benefit at 28 days (25.0% vs. 26.1%, p = 0.85). Patients randomized to prehospital LTOWB relative to standard care had lower red cell transfusion requirements at 24 hours (p < 0.01) and a lower incidence of abnormal thromboelastographic measurements. No transfusion reactions during the prehospital or in-hospital phase of care were documented. CONCLUSION Prehospital through in-hospital LTOWB resuscitation is safe and may be associated with hemostatic benefits. A large-scale clinical trial is feasible with protocol adjustment and would allow the effects of prehospital LTOWB on survival and other pertinent clinical outcomes to be appropriately characterized. LEVEL OF EVIDENCE II, Cluster randomized pilot trial.
PICO Summary
Population
Injured air medical patients (n= 86).
Intervention
Pre-hospital and in-hospital low titre group O whole blood (LTOWB) resuscitation (n= 40).
Comparison
Standard pre-hospital air medical care including red cell transfusion and crystalloids followed by in-hospital component transfusion (n= 46).
Outcome
Patients randomized to pre-hospital LTOWB relative to standard care had lower red cell transfusion requirements at 24 hours, and a lower incidence of abnormal thromboelastographic measurements. No transfusion reactions during the pre-hospital or in-hospital phase of care were documented.
2.
Tranexamic Acid During Prehospital Transport in Patients at Risk for Hemorrhage After Injury: A Double-blind, Placebo-Controlled, Randomized Clinical Trial
Guyette FX, Brown JB, Zenati MS, Early-Young BJ, Adams PW, Eastridge BJ, Nirula R, Vercruysse GA, O'Keeffe T, Joseph B, et al
JAMA surgery. 2020
-
-
Free full text
-
Abstract
IMPORTANCE In-hospital administration of tranexamic acid after injury improves outcomes in patients at risk for hemorrhage. Data demonstrating the benefit and safety of the pragmatic use of tranexamic acid in the prehospital phase of care are lacking for these patients. OBJECTIVE To assess the effectiveness and safety of tranexamic acid administered before hospitalization compared with placebo in injured patients at risk for hemorrhage. DESIGN, SETTING, AND PARTICIPANTS This pragmatic, phase 3, multicenter, double-blind, placebo-controlled, superiority randomized clinical trial included injured patients with prehospital hypotension (systolic blood pressure ≤90 mm Hg) or tachycardia (heart rate ≥110/min) before arrival at 1 of 4 US level 1 trauma centers, within an estimated 2 hours of injury, from May 1, 2015, through October 31, 2019. INTERVENTIONS Patients received 1 g of tranexamic acid before hospitalization (447 patients) or placebo (456 patients) infused for 10 minutes in 100 mL of saline. The randomization scheme used prehospital and in-hospital phase assignments, and patients administered tranexamic acid were allocated to abbreviated, standard, and repeat bolus dosing regimens on trauma center arrival. MAIN OUTCOMES AND MEASURES The primary outcome was 30-day all-cause mortality. RESULTS In all, 927 patients (mean [SD] age, 42 [18] years; 686 [74.0%] male) were eligible for prehospital enrollment (460 randomized to tranexamic acid intervention; 467 to placebo intervention). After exclusions, the intention-to-treat study cohort comprised 903 patients: 447 in the tranexamic acid arm and 456 in the placebo arm. Mortality at 30 days was 8.1% in patients receiving tranexamic acid compared with 9.9% in patients receiving placebo (difference, -1.8%; 95% CI, -5.6% to 1.9%; P = .17). Results of Cox proportional hazards regression analysis, accounting for site, verified that randomization to tranexamic acid was not associated with a significant reduction in 30-day mortality (hazard ratio, 0.81; 95% CI, 0.59-1.11, P = .18). Prespecified dosing regimens and post-hoc subgroup analyses found that prehospital tranexamic acid were associated with significantly lower 30-day mortality. When comparing tranexamic acid effect stratified by time to treatment and qualifying shock severity in a post hoc comparison, 30-day mortality was lower when tranexamic acid was administered within 1 hour of injury (4.6% vs 7.6%; difference, -3.0%; 95% CI, -5.7% to -0.3%; P < .002). Patients with severe shock (systolic blood pressure ≤70 mm Hg) who received tranexamic acid demonstrated lower 30-day mortality compared with placebo (18.5% vs 35.5%; difference, -17%; 95% CI, -25.8% to -8.1%; P < .003). CONCLUSIONS AND RELEVANCE In injured patients at risk for hemorrhage, tranexamic acid administered before hospitalization did not result in significantly lower 30-day mortality. The prehospital administration of tranexamic acid after injury did not result in a higher incidence of thrombotic complications or adverse events. Tranexamic acid given to injured patients at risk for hemorrhage in the prehospital setting is safe and associated with survival benefit in specific subgroups of patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02086500.
3.
Prehospital Blood Product and Crystalloid Resuscitation in the Severely Injured Patient: A Secondary Analysis of the Prehospital Air Medical Plasma Trial
Guyette FX, Sperry JL, Peitzman AB, Billiar TR, Daley BJ, Miller RS, Harbrecht BG, Claridge JA, Putnam T, Duane TM, et al
Annals of surgery. 2019
Abstract
MINI: Hemorrhage is the primary cause of preventable trauma death. Secondary analyses of scene patients from the PAMPer trial demonstrated that prehospital packed red blood cell and plasma had the greatest reduction in 30-day mortality compared with crystalloid-only resuscitation. Patients with hemorrhagic shock should receive prehospital blood products when available, preferably packed red blood cell and plasma. OBJECTIVE The aim of this study was to determine whether prehospital blood products reduce 30-day mortality in patients at risk for hemorrhagic shock compared with crystalloid only resuscitation. SUMMARY OF BACKGROUND DATA Hemorrhage is the primary cause of preventable death after injury. Large volume crystalloid resuscitation can be deleterious. The benefits of prehospital packed red blood cells (PRBCs), plasma, or transfusion of both products among trauma patients is unknown compared with crystalloid. METHODS Secondary analysis of the multicenter PAMPer trial was performed on hypotensive injured patients from the scene. The trial randomized 27 helicopter bases to prehospital plasma or standard resuscitation. Standard resuscitation at the sites was equally divided between crystalloid and crystalloid + PRBC. This led to 4 prehospital resuscitation groups: crystalloid only; PRBC; plasma; and PRBC+plasma. Cox regression determined the association between resuscitation groups and risk-adjusted 30-day mortality. The dose effect of resuscitation fluids was also explored. RESULTS Four hundred seven patients were included. PRBC+plasma had the greatest benefit [hazard ratio (HR) 0.38; 95% confidence interval (95% CI) 0.26-0.55, P < 0.001], followed by plasma (HR 0.57; 95% CI 0.36-0.91, P = 0.017) and PRBC (HR 0.68; 95% CI 0.49-0.95, P = 0.025) versus crystalloid only. Mortality was lower per-unit of PRBC (HR 0.69; 95% CI 0.52-0.92, p = 0.009) and plasma (HR 0.68; 95% CI 0.54-0.88, P = 0.003). Crystalloid volume was associated with increased mortality among patients receiving blood products (HR 1.65; 95% CI 1.17-2.32, P = 0.004). CONCLUSION Patients receiving prehospital PRBC+plasma had the greatest mortality benefit. Crystalloid only had the worst survival. Patients with hemorrhagic shock should receive prehospital blood products when available, preferably PRBC+plasma. Prehospital whole blood may be ideal in this population.
4.
Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock
Sperry JL, Guyette FX, Brown JB, Yazer MH, Triulzi DJ, Early-Young BJ, Adams PW, Daley BJ, Miller RS, Harbrecht BG, et al
The New England Journal of Medicine. 2018;379((4)):315-326.
Abstract
BACKGROUND After a person has been injured, prehospital administration of plasma in addition to the initiation of standard resuscitation procedures in the prehospital environment may reduce the risk of downstream complications from hemorrhage and shock. Data from large clinical trials are lacking to show either the efficacy or the risks associated with plasma transfusion in the prehospital setting. METHODS To determine the efficacy and safety of prehospital administration of thawed plasma in injured patients who are at risk for hemorrhagic shock, we conducted a pragmatic, multicenter, cluster-randomized, phase 3 superiority trial that compared the administration of thawed plasma with standard-care resuscitation during air medical transport. The primary outcome was mortality at 30 days. RESULTS A total of 501 patients were evaluated: 230 patients received plasma (plasma group) and 271 received standard-care resuscitation (standard-care group). Mortality at 30 days was significantly lower in the plasma group than in the standard-care group (23.2% vs. 33.0%; difference, -9.8 percentage points; 95% confidence interval, -18.6 to -1.0%; P=0.03). A similar treatment effect was observed across nine prespecified subgroups (heterogeneity chi-square test, 12.21; P=0.79). Kaplan-Meier curves showed an early separation of the two treatment groups that began 3 hours after randomization and persisted until 30 days after randomization (log-rank chi-square test, 5.70; P=0.02). The median prothrombin-time ratio was lower in the plasma group than in the standard-care group (1.2 [interquartile range, 1.1 to 1.4] vs. 1.3 [interquartile range, 1.1 to 1.6], P<0.001) after the patients' arrival at the trauma center. No significant differences between the two groups were noted with respect to multiorgan failure, acute lung injury-acute respiratory distress syndrome, nosocomial infections, or allergic or transfusion-related reactions. CONCLUSIONS In injured patients at risk for hemorrhagic shock, the prehospital administration of thawed plasma was safe and resulted in lower 30-day mortality and a lower median prothrombin-time ratio than standard-care resuscitation. (Funded by the U.S. Army Medical Research and Materiel Command; PAMPer ClinicalTrials.gov number, NCT01818427 .).