-
1.
Effect of Out-of-Hospital Tranexamic Acid vs Placebo on 6-Month Functional Neurologic Outcomes in Patients With Moderate or Severe Traumatic Brain Injury
Rowell SE, Meier EN, McKnight B, Kannas D, May S, Sheehan K, Bulger EM, Idris AH, Christenson J, Morrison LJ, et al
Jama. 2020;324(10):961-974
-
-
-
Free full text
-
-
Editor's Choice
Abstract
IMPORTANCE Traumatic brain injury (TBI) is the leading cause of death and disability due to trauma. Early administration of tranexamic acid may benefit patients with TBI. OBJECTIVE To determine whether tranexamic acid treatment initiated in the out-of-hospital setting within 2 hours of injury improves neurologic outcome in patients with moderate or severe TBI. DESIGN, SETTING, AND PARTICIPANTS Multicenter, double-blinded, randomized clinical trial at 20 trauma centers and 39 emergency medical services agencies in the US and Canada from May 2015 to November 2017. Eligible participants (N = 1280) included out-of-hospital patients with TBI aged 15 years or older with Glasgow Coma Scale score of 12 or less and systolic blood pressure of 90 mm Hg or higher. INTERVENTIONS Three interventions were evaluated, with treatment initiated within 2 hours of TBI: out-of-hospital tranexamic acid (1 g) bolus and in-hospital tranexamic acid (1 g) 8-hour infusion (bolus maintenance group; n = 312), out-of-hospital tranexamic acid (2 g) bolus and in-hospital placebo 8-hour infusion (bolus only group; n = 345), and out-of-hospital placebo bolus and in-hospital placebo 8-hour infusion (placebo group; n = 309). MAIN OUTCOMES AND MEASURES The primary outcome was favorable neurologic function at 6 months (Glasgow Outcome Scale-Extended score >4 [moderate disability or good recovery]) in the combined tranexamic acid group vs the placebo group. Asymmetric significance thresholds were set at 0.1 for benefit and 0.025 for harm. There were 18 secondary end points, of which 5 are reported in this article: 28-day mortality, 6-month Disability Rating Scale score (range, 0 [no disability] to 30 [death]), progression of intracranial hemorrhage, incidence of seizures, and incidence of thromboembolic events. RESULTS Among 1063 participants, a study drug was not administered to 96 randomized participants and 1 participant was excluded, resulting in 966 participants in the analysis population (mean age, 42 years; 255 [74%] male participants; mean Glasgow Coma Scale score, 8). Of these participants, 819 (84.8%) were available for primary outcome analysis at 6-month follow-up. The primary outcome occurred in 65% of patients in the tranexamic acid groups vs 62% in the placebo group (difference, 3.5%; [90% 1-sided confidence limit for benefit, -0.9%]; P = .16; [97.5% 1-sided confidence limit for harm, 10.2%]; P = .84). There was no statistically significant difference in 28-day mortality between the tranexamic acid groups vs the placebo group (14% vs 17%; difference, -2.9% [95% CI, -7.9% to 2.1%]; P = .26), 6-month Disability Rating Scale score (6.8 vs 7.6; difference, -0.9 [95% CI, -2.5 to 0.7]; P = .29), or progression of intracranial hemorrhage (16% vs 20%; difference, -5.4% [95% CI, -12.8% to 2.1%]; P = .16). CONCLUSIONS AND RELEVANCE Among patients with moderate to severe TBI, out-of-hospital tranexamic acid administration within 2 hours of injury compared with placebo did not significantly improve 6-month neurologic outcome as measured by the Glasgow Outcome Scale-Extended. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01990768.
PICO Summary
Population
Out-of-hospital patients with traumatic brain injury aged 15 years or older (n= 1280).
Intervention
Bolus maintenance group: out-of-hospital tranexamic acid (1 g) bolus and in-hospital tranexamic acid (1 g) 8-hour infusion (n = 312).
Comparison
Bolus only group: out-of-hospital tranexamic acid (2 g) bolus and in-hospital placebo 8-hour infusion (n = 345). Placebo group: out-of-hospital placebo bolus and in-hospital placebo 8-hour infusion (n = 309).
Outcome
A total of 819 participants were available for primary outcome analysis at 6-month follow-up. The primary outcome (favorable neurologic function at 6 months) occurred in 65% of patients in the tranexamic acid groups vs 62% in the placebo group. There was no statistically significant difference in 28-day mortality between the tranexamic acid groups vs the placebo group (14% vs 17%); 6-month Disability Rating Scale score (6.8 vs 7.6); or progression of intracranial hemorrhage (16% vs 20%).
-
2.
TXA Administration in the Field Does Not Affect Admission TEG after Traumatic Brain Injury
Dixon AL, McCully BH, Rick EA, Dewey E, Farrell DH, Morrison LJ, McMullan J, Robinson BRH, Callum J, Tibbs B, et al
The journal of trauma and acute care surgery. 2020
Abstract
BACKGROUND No FDA-approved medication improves outcomes following traumatic brain injury (TBI). A forthcoming clinical trial that evaluated the effects of two prehospital tranexamic acid (TXA) dosing strategies compared with placebo demonstrated no differences in thromboelastography (TEG) values. We proposed to explore the impact of TXA on markers of coagulation and fibrinolysis in patients with moderate to severe TBI. METHODS Data were extracted from a placebo-controlled clinical trial in which patients ≥15 years old with TBI (Glascow Coma Scale 3-12) and systolic blood pressure ≥90 mmHg were randomized prehospital to receive placebo bolus/placebo infusion (Placebo), 1 gram (g) TXA bolus/1g TXA infusion (Bolus Maintenance [BM]); or 2g TXA bolus/placebo infusion (Bolus Only [BO]). TEG was performed and coagulation measures including prothrombin time (PT), activated partial thromboplastin time (aPTT), international ratio (INR), fibrinogen, D-dimer, plasmin anti-plasmin (PAP), thrombin anti-thrombin (TAT), tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) were quantified at admission and six hours later. RESULTS Of 966 patients receiving study drug, 700 had labs drawn at admission and six hours later. There were no statistically significant differences in TEG values, including LY30, between groups (p>0.05). No differences between PT, aPTT, INR, fibrinogen, TAT, tPA, and PAI-1 were demonstrated across treatment groups. Concentrations of D-dimer in TXA treatment groups were less than placebo at six hours (p<0.001). Concentrations of PAP were less in TXA treatment groups than placebo on admission (p<0.001) and six hours (p=0.02). No differences in D-dimer and PAP were observed between BM and BO. CONCLUSION While D-dimer and PAP levels reflect a lower degree of fibrinolysis following prehospital administration of TXA when compared to placebo in a large prehospital trial of patients with TBI, TEG obtained on admission and six hours later did not demonstrate any differences in fibrinolysis between the two TXA dosing regimens and placebo. LEVEL OF EVIDENCE III; Diagnostic.
-
3.
Earlier time to hemostasis is associated with decreased mortality and rate of complications: Results from the Pragmatic Randomized Optimal Platelet and Plasma Ratio trial
Chang R, Kerby JD, Kalkwarf KJ, Van Belle G, Fox EE, Cotton BA, Cohen MJ, Schreiber MA, Brasel K, Bulger EM, et al
The journal of trauma and acute care surgery. 2019;87(2):342-349
-
-
Free full text
-
Abstract
BACKDROP Clinicians intuitively recognize that faster time to hemostasis is important in bleeding trauma patients, but these times are rarely reported. METHODS Prospectively collected data from the Pragmatic Randomized Optimal Platelet and Plasma Ratios trial were analyzed. Hemostasis was predefined as no intraoperative bleeding requiring intervention in the surgical field or resolution of contrast blush on interventional radiology (IR). Patients who underwent an emergent (within 90 minutes) operating room (OR) or IR procedure were included. Mixed-effects Poisson regression with robust error variance (controlling for age, Injury Severity Score, treatment arm, injury mechanism, base excess on admission [missing values estimated by multiple imputation], and time to OR/IR as fixed effects and study site as a random effect) with modified Bonferroni corrections tested the hypothesis that decreased time to hemostasis was associated with decreased mortality and decreased incidence of acute kidney injury (AKI), acute respiratory distress syndrome (ARDS), multiple-organ failure (MOF), sepsis, and venous thromboembolism. RESULTS Of 680 enrolled patients, 468 (69%) underwent an emergent procedure. Patients with decreased time to hemostasis were less severely injured, had less deranged base excess on admission, and lower incidence of blunt trauma (all p < 0.05). In 408 (87%) patients in whom hemostasis was achieved, every 15-minute decrease in time to hemostasis was associated with decreased 30-day mortality (RR, 0.97; 95% confidence interval [CI], 0.94-0.99), AKI (RR, 0.97; 95% CI, 0.96-0.98), ARDS (RR, 0.98; 95% CI, 0.97-0.99), MOF (RR, 0.94; 95% CI, 0.91-0.97), and sepsis (RR, 0.98; 95% CI, 0.96-0.99), but not venous thromboembolism (RR, 0.99; 95% CI, 0.96-1.03). CONCLUSION Earlier time to hemostasis was independently associated with decreased incidence of 30-day mortality, AKI, ARDS, MOF, and sepsis in bleeding trauma patients. Time to hemostasis should be considered as an endpoint in trauma studies and as a potential quality indicator. LEVEL OF EVIDENCE Therapeutic/care management, level III.
-
4.
Severely injured trauma patients with admission hyperfibrinolysis: Is there a role of tranexamic acid? Findings from the PROPPR trial
Khan M, Jehan F, Bulger EM, O'Keeffe T, Holcomb JB, Wade CE, Schreiber MA, Joseph B, PROPPR Study Group
The Journal of Trauma and Acute Care Surgery. 2018;85((5)):851-857.
-
-
Free full text
-
Abstract
INTRODUCTION Administration of tranexamic acid (TXA) in coagulopathy of trauma gained popularity after the CRASH-2 trial. The aim of our analysis was to analyze the role of TXA in severely injured trauma patients with admission hyperfibrinolysis. METHODS We reviewed the prospectively collected Pragmatic, Randomized Optimal Platelet and Plasma Ratios database. We included patients with admission hyperfibrinolysis (Ly30 >3%) on thromboelastography. Patients were stratified into two groups (TXA and No-TXA) and were matched in 1:2 ratio using propensity score matching for demographics, admission vitals, and injury severity. Primary outcome measures were 6-, 12-, and 24-hour and 30-day mortality; 24-hour transfusion requirements; time to achieve hemostasis; and rebleeding after hemostasis requiring intervention. Secondary outcome measures were thrombotic complications. RESULTS We analyzed 680 patients. Of those, 118 had admission hyperfibrinolysis, and 93 patients (TXA: 31 patients; No-TXA: 62 patients) were matched. Matched groups were similar in age (p = 0.33), gender (p = 0.84), race (p = 0.81), emergency department (ED) Glasgow Coma Scale (p = 0.34), ED systolic blood pressure (p = 0.28), ED heart rate (p = 0.43), mechanism of injury (p = 0.45), head Abbreviated Injury Scale score (p = 0.68), injury severity score (p = 0.56), and blood products ratio (p = 0.44). Patients who received TXA had a lower 6-hour mortality rate (34% vs. 13%, p = 0.04) and higher 24-hour transfusion of plasma (15 vs. 10 units, p = 0.03) compared with the No-TXA group. However, there was no difference in 12-hour (p = 0.24), 24-hour (p = 0.25), and 30-day mortality (p = 0.82). Similarly, there was no difference in 24-hour transfusion of RBC (p = 0.11) or platelets (p = 0.13), time to achieve hemostasis (p = 0.65), rebleeding requiring intervention (p = 0.13), and thrombotic complications (p = 0.98). CONCLUSION Tranexamic acid was associated with increased 6-hour survival but does not improve long-term outcomes in severely injured trauma patients with hemorrhage who develop hyperfibrinolysis. Moreover, TXA administration was not associated with thrombotic complications. Further randomized clinical trials will identify the subset of trauma patients who may benefit from TXA. LEVEL OF EVIDENCE Therapeutic study, level III.
-
5.
The impact of hypothermia on outcomes in massively transfused patients
Lester ELW, Fox EE, Holcomb JB, Brasel KJ, Bulger EM, Cohen MJ, Cotton BA, Fabian TC, Kerby JD, O'Keefe T, et al
The Journal of Trauma and Acute Care Surgery. 2018
Abstract
BACKGROUND Hypothermia is associated with poor outcomes after injury. The relationship between hypothermia during contemporary large volume resuscitation and blood product consumption is unknown. We evaluated this association, and the predictive value of hypothermia on mortality. METHODS Patients predicted to receive massive transfusion at 12 Level-1 trauma centers, randomized in the PROPPR trial, were grouped into those who were hypothermic (<36 degrees Celsius) or normothermic (36-38.5 degrees Celsius) within the first 6 hours of Emergency department arrival. The impact of hypothermia or normothermia on the volume of blood product required during the first 24 hours was determined via negative binomial regression, adjusting for treatment arm, injury severity score, mechanism, demographics, pre-emergency department fluid volume, blood administered prior to becoming hypothermic, pulse and systolic blood pressure on arrival and the time exposed to hypothermic or normothermic temperatures. RESULTS Of 680 patients, 590 had a temperature measured during the first 6 hours in hospital, and 399 experienced hypothermia. The mean number of red blood cell units given to all patients in the first 24 hours of admission was 8.8 (95% CI 7.9-9.6). In multivariable analysis, every one-degree decrease in temperature below 36.0 degrees was associated with a 10% increase (incidence rate ratio [IRR] 0.90; 95% CI 0.89-0.92; p<0.00) in consumption of red blood cells during the first 24 hours of admission. There was no association between red blood cell administration and a temperature above 36 degrees. Hypothermia on arrival was an independent predictor of mortality, with an adjusted odds ratio of 2.7 (95% CI 1.7-4.5; p<0.00) for 24-hour and 1.8 (95% CI 1.3-2.4; p<0.00) for 30-day mortality. CONCLUSION Hypothermia is associated with increased in blood product consumption and mortality. These findings support the maintenance of normothermia in trauma patients, and suggests that further investigation on the impact of cooling or rewarming during massive transfusion is warranted. LEVEL OF EVIDENCE III Prognostic.
-
6.
Outcomes after concomitant traumatic brain injury and hemorrhagic shock: a secondary analysis from the Pragmatic, Randomized Optimal Platelets and Plasma Ratios trial
Galvagno SM Jr, Fox EE, Appana SN, Baraniuk S, Bosarge PL, Bulger EM, Callcut RA, Cotton BA, Goodman M, Inaba K, et al
The Journal of Trauma and Acute Care Surgery. 2017;83((4)):668-674.
-
-
Free full text
-
Abstract
BACKGROUND Often the clinician is faced with a diagnostic and therapeutic dilemma in patients with concomitant traumatic brain injury (TBI) and hemorrhagic shock (HS), as rapid deterioration from either can be fatal. Knowledge about outcomes after concomitant TBI and HS may help prioritize the emergent management of these patients. We hypothesized that patients with concomitant TBI and HS (TBI + HS) had worse outcomes and required more intensive care compared with patients with only one of these injuries. METHODS This is a post hoc analysis of the Pragmatic, Randomized Optimal Platelets and Plasma Ratios (PROPPR) trial. TBI was defined by a head Abbreviated Injury Scale score greater than 2. HS was defined as a base excess of -4 or less and/or shock index of 0.9 or greater. The primary outcome for this analysis was mortality at 30 days. Logistic regression, using generalized estimating equations, was used to model categorical outcomes. RESULTS Six hundred seventy patients were included. Patients with TBI + HS had significantly higher lactate (median, 6.3; interquartile range, 4.7-9.2) compared with the TBI group (median, 3.3; interquartile range, 2.3-4). TBI + HS patients had higher activated prothrombin times and lower platelet counts. Unadjusted mortality was higher in the TBI + HS (51.6%) and TBI (50%) groups compared with the HS (17.5%) and neither group (7.7%). Adjusted odds of death in the TBI and TBI + HS groups were 8.2 (95% confidence interval, 3.4-19.5) and 10.6 (95% confidence interval, 4.8-23.2) times higher, respectively. Ventilator, intensive care unit-free and hospital-free days were lower in the TBI and TBI + HS groups compared with the other groups. Patients with TBI + HS or TBI had significantly greater odds of developing a respiratory complication compared with the neither group. CONCLUSION The addition of TBI to HS is associated with worse coagulopathy before resuscitation and increased mortality. When controlling for multiple known confounders, the diagnosis of TBI alone or TBI+HS was associated with significantly greater odds of developing respiratory complications. LEVEL OF EVIDENCE Prognostic study, level II.
-
7.
Outcomes following concomitant traumatic brain injury and hemorrhagic shock: a secondary analysis from the PROPPR trial
Galvagno SM Jr, Fox EE, Appana SN, Baraniuk S, Bosarge PL, Bulger EM, Callcut RA, Cotton BA, Goodman M, Inaba K, et al
The Journal of Trauma and Acute Care Surgery. 2017;83((4):):668-674
Abstract
BACKGROUND Often the clinician is faced with a diagnostic and therapeutic dilemma in patients with concomitant traumatic brain injury (TBI) and hemorrhagic shock (HS), as rapid deterioration from either can be fatal. Knowledge about outcomes following concomitant TBI and HS may help prioritize the emergent management of these patients. We hypothesized that patients with concomitant TBI and HS (TBI+HS) had worse outcomes and required more intensive care compared to patients with only one of these injuries. METHODS This is a post-hoc analysis of the Pragmatic, Randomized Optimal Platelets and Plasma Ratios (PROPPR) trial. TBI was defined by a head abbreviated injury scale >2. HS was defined as a base excess ≤ -4 and/or shock index ≥ 0.9. The primary outcome for this analysis was mortality at 30 days. Logistic regression, using generalized estimating equations (GEE), was used to model categorical outcomes. RESULTS 670 patients were included. Patients with TBI+HS had significantly higher lactate (median 6.3; IQR 4.7,9.2) compared to the TBI group (median 3.3; IQR 2.3,4). TBI+HS patients had higher activated prothrombin times and lower platelet counts. Unadjusted mortality was higher in the TBI+HS (51.6%) and TBI (50%) groups compared to the HS (17.5%) and neither group (7.7%). Adjusted odds of death in the TBI and TBI+HS groups were 8.2 (95% CI, 3.4-19.5) and 10.6 (95% CI, 4.8-23.2) times higher, respectively. Ventilator, ICU- and hospital-free days were lower in the TBI and TBI+HS groups compared to the other groups. Patients with TBI+HS or TBI had significantly greater odds of developing a respiratory complication compared to the neither group. CONCLUSIONS The addition of TBI to HS is associated with worse coagulopathy prior to resuscitation, and increased mortality. When conrolling for multiple known confounders, the diagnosis of TBI alone or TBI+HS was associated with significantly greater odds of developing respiratory complications. STUDY TYPE prognostic study LEVEL OF EVIDENCE II.
-
8.
Risk factors for the development of acute respiratory distress syndrome following hemorrhage
Robinson BRH, Cohen MJ, Holcomb JB, Pritts TA, Gomaa D, Fox EE, Branson RD, Callcut RA, Cotton BA, Schreiber MA, et al
Shock (Augusta, Ga.). 2017;50((3):):258-264
-
-
Free full text
-
Abstract
BACKGROUND The Pragmatic Randomized Optimal Platelet and Plasma Ratios (PROPPR) study evaluated the effects of plasma and platelets on hemostasis and mortality after hemorrhage. The pulmonary consequences of resuscitation strategies that mimic whole blood, remain unknown. METHODS A secondary analysis of the PROPPR study was performed. Injured patients predicted to receive a massive transfusion were randomized to 1:1:1 vs. 1:1:2 plasma-platelet-RBC ratios at 12 Level I North American trauma centers. Patients with survival >24 hours, an ICU stay, and a recorded PaO2/FiO2 (P/F) ratio were included. ARDS was defined as a P/F ratio < 200, with bilateral pulmonary infiltrates, and adjudicated by investigators. RESULTS 454 patients were reviewed (230 received 1:1:1, 224 1:1:2). Age, sex, injury mechanism, and regional abbreviated injury scale (AIS) scores did not differ between cohorts. Tidal volume, PEEP, and lowest P/F ratio did not differ. No significant differences in ARDS rates (14.8 vs. 18.4%), ventilator-free (24 vs. 24) or ICU-free days (17.5 vs. 18), hospital length of stay (22 vs. 18 days), or 30-day mortality were found (28 vs. 28%). ARDS was associated with blunt injury (OR 3.61 [1.53-8.81] p < 0.01) and increasing chest AIS (OR 1.40 [1.15-1.71] p < 0.01). Each 500 mL of crystalloid infused during hours 0-6 was associated with a 9% increase in the rate of ARDS (OR 1.09 [1.04-1.14] p < 0.01). Blood given at 0-6 or 7-24 hours were not risk factors for lung injury. CONCLUSION Acute crystalloid exposure, but not blood products, is a potentially modifiable risk factor for the prevention of ARDS following hemorrhage.
-
9.
Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial
Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, del Junco DJ, Brasel KJ, Bulger EM, Callcut RA, et al
Jama. 2015;313((5):):471-82.
-
-
-
Free full text
-
Abstract
IMPORTANCE Severely injured patients experiencing hemorrhagic shock often require massive transfusion. Earlier transfusion with higher blood product ratios (plasma, platelets, and red blood cells), defined as damage control resuscitation, has been associated with improved outcomes; however, there have been no large multicenter clinical trials. OBJECTIVE To determine the effectiveness and safety of transfusing patients with severe trauma and major bleeding using plasma, platelets, and red blood cells in a 1:1:1 ratio compared with a 1:1:2 ratio. DESIGN, SETTING, AND PARTICIPANTS Pragmatic, phase 3, multisite, randomized clinical trial of 680 severely injured patients who arrived at 1 of 12 level I trauma centers in North America directly from the scene and were predicted to require massive transfusion between August 2012 and December 2013. INTERVENTIONS Blood product ratios of 1:1:1 (338 patients) vs 1:1:2 (342 patients) during active resuscitation in addition to all local standard-of-care interventions (uncontrolled). MAIN OUTCOMES AND MEASURES Primary outcomes were 24-hour and 30-day all-cause mortality. Prespecified ancillary outcomes included time to hemostasis, blood product volumes transfused, complications, incidence of surgical procedures, and functional status. RESULTS No significant differences were detected in mortality at 24 hours (12.7% in 1:1:1 group vs 17.0% in 1:1:2 group; difference, -4.2% [95% CI, -9.6% to 1.1%]; P=.12) or at 30 days (22.4% vs 26.1%, respectively; difference, -3.7% [95% CI, -10.2% to 2.7%]; P=.26). Exsanguination, which was the predominant cause of death within the first 24 hours, was significantly decreased in the 1:1:1 group (9.2% vs 14.6% in 1:1:2 group; difference, -5.4% [95% CI, -10.4% to -0.5%]; P=.03). More patients in the 1:1:1 group achieved hemostasis than in the 1:1:2 group (86% vs 78%, respectively; P=.006). Despite the 1:1:1 group receiving more plasma (median of 7 U vs 5 U, P<.001) and platelets (12 U vs 6 U, P<.001) and similar amounts of red blood cells (9 U) over the first 24 hours, no differences between the 2 groups were found for the 23 prespecified complications, including acute respiratory distress syndrome, multiple organ failure, venous thromboembolism, sepsis, and transfusion-related complications. CONCLUSIONS AND RELEVANCE Among patients with severe trauma and major bleeding, early administration of plasma, platelets, and red blood cells in a 1:1:1 ratio compared with a 1:1:2 ratio did not result in significant differences in mortality at 24 hours or at 30 days. However, more patients in the 1:1:1 group achieved hemostasis and fewer experienced death due to exsanguination by 24 hours. Even though there was an increased use of plasma and platelets transfused in the 1:1:1 group, no other safety differences were identified between the 2 groups. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01545232.
PICO Summary
Population
Patients with severe trauma and major bleeding in 12 trauma centres in North America (n= 680).
Intervention
Plasma, platelets, and red blood cells in a 1:1:1 ratio (n= 338).
Comparison
Plasma, platelets, and red blood cells in a 1:1:2 ratio (n= 342).
Outcome
No significant differences were detected in mortality at 24 hours (12.7% in 1:1:1 group vs. 17.0% in 1:1:2 group; difference -4.2% [95% CI -9.6% to 1.1%]) or at 30 days (22.4% vs. 26.1%, respectively; difference -3.7% [95% CI -10.2% to 2.7%]). Exsanguination, which was the predominant cause of death within the first 24 hours, was significantly decreased in the 1:1:1 group (9.2% vs. 14.6% in 1:1:2 group; difference -5.4% [95% CI -10.4% to -0.5%]). More patients in the 1:1:1 group achieved haemostasis than in the 1:1:2 group (86% vs. 78% respectively). Despite the 1:1:1 group receiving more plasma (median of 7 U vs. 5 U) and platelets (12 U vs. 6 U) and similar amounts of red blood cells (9 U) over the first 24 hours, no differences between the 2 groups were found for the 23 prespecified complications, including acute respiratory distress syndrome, multiple organ failure, venous thromboembolism, sepsis, and transfusion-related complications.