-
1.
Diagnostic and therapeutic treatment modalities for acute lower gastrointestinal bleeding: a systematic review
Oakland K, Isherwood J, Lahiff C, Goldsmith P, Desborough M, Colman KS, Guy R, Uberoi R, Murphy MF, East JE, et al
Endoscopy International Open. 2017;5((10)):E959-E973.
Abstract
BACKGROUND AND STUDY AIMS Investigations for lower gastrointestinal bleeding (LGIB) include flexible sigmoidoscopy, colonoscopy, computed tomographic angiography (CTA), and angiography. All may be used to direct endoscopic, radiological or surgical treatment, although their optimal use is unknown. The aims of this study were to determine the diagnostic and therapeutic yields of endoscopy, CTA, and angiography for managing LGIB, and their influence on rebleeding, transfusion, and hospital stay. PATIENTS AND METHODS A systematic search of MEDLINE, PubMed, EMBASE, and CENTRAL was undertaken to identify randomized controlled trials (RCTs) and nonrandomized studies of intervention (NRSIs) published between 2000 and 12 November 2015 in patients hospitalized with LGIB. Separate meta-analyses were conducted, presented as pooled odds (ORs) or risk ratios (RR) with 95 % confidence intervals (CIs). RESULTS Two RCTs and 13 NRSIs were included, none of which examined flexible sigmoidoscopy, or compared endotherapy with embolization, or investigated the timing of CTA or angiography. Two NRSIs (57 - 223 participants) comparing colonoscopy and CTA were of insufficient quality for synthesis but showed no difference in diagnostic yields between the two interventions. One RCT and 4 NRSIs (779 participants) compared early colonoscopy (< 24 hours) with colonoscopy performed later; meta-analysis of the NRSIs demonstrated higher diagnostic and therapeutic yields with early colonoscopy (OR 1.86, 95 %CI 1.12 to 2.86, P = 0.004 and OR 3.08, 95 %CI 1.93 to 4.90, P < 0.001, respectively) and reduced length of stay (mean difference 2.64 days, 95 %CI 1.54 to 3.73), but no difference in transfusion or rebleeding. CONCLUSIONS In LGIB there is a paucity of high-quality evidence, although the limited studies on the timing of colonoscopy suggest increased rates of diagnosis and therapy with early colonoscopy.
-
2.
Antifibrinolytics (lysine analogues) for the prevention of bleeding in people with haematological disorders
Estcourt LJ, Desborough M, Brunskill SJ, Doree C, Hopewell S, Murphy MF, Stanworth SJ
The Cochrane Database of Systematic Reviews. 2016;((3)):CD009733.
Abstract
BACKGROUND People with haematological disorders are frequently at risk of severe or life-threatening bleeding as a result of thrombocytopenia (reduced platelet count). This is despite the routine use of prophylactic platelet transfusions to prevent bleeding once the platelet count falls below a certain threshold. Platelet transfusions are not without risk and adverse events may be life-threatening. A possible adjunct to prophylactic platelet transfusions is the use of antifibrinolytics, specifically the lysine analogues tranexamic acid (TXA) and epsilon aminocaproic acid (EACA). This is an update of a Cochrane review first published in 2013. OBJECTIVES To determine the efficacy and safety of antifibrinolytics (lysine analogues) in preventing bleeding in people with haematological disorders. SEARCH METHODS We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (The Cochrane Library 2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950) and ongoing trial databases to 07 March 2016. SELECTION CRITERIA We included RCTs involving participants with haematological disorders, who would routinely require prophylactic platelet transfusions to prevent bleeding. We only included trials involving the use of the lysine analogues TXA and EACA. DATA COLLECTION AND ANALYSIS Two review authors independently screened all electronically-derived citations and abstracts of papers, identified by the review search strategy, for relevancy. Two review authors independently assessed the full text of all potentially relevant trials for eligibility, completed the data extraction and assessed the studies for risk of bias using The Cochrane Collaboration's 'Risk of bias' tool. We requested missing data from one author but the data were no longer available. The outcomes are reported narratively: we performed no meta-analyses because of the heterogeneity of the available data. MAIN RESULTS We identified three new studies in this update of the review. In total seven studies were eligible for inclusion, three were ongoing RCTs and four were completed studies. The four completed studies were included in the original review and the three ongoing studies were included in this update. We did not identify any RCTs that compared TXA with EACA.Of the four completed studies, one cross-over TXA study (eight participants) was excluded from the outcome analysis because it had very flawed study methodology. Data from the other three studies were all at unclear risk of bias due to lack of reporting of study methodology.Three studies (two TXA (12 to 56 participants), one EACA (18 participants) reported in four articles (published 1983 to 1995) were included in the narrative review. All three studies compared the drug with placebo. All three studies included adults with acute leukaemia receiving chemotherapy. One study (12 participants) only included participants with acute promyelocytic leukaemia. None of the studies included children. One of the three studies reported funding sources and this study was funded by a charity.We are uncertain whether antifibrinolytics reduce the risk of bleeding (three studies; 86 participants; very low-quality evidence). Only one study reported the number of bleeding events per participant and there was no difference in the number of bleeding events seen during induction or consolidation chemotherapy between TXA and placebo (induction; 38 participants; mean difference (MD) 1.70 bleeding events, 95% confidence interval (CI) -0.37 to 3.77: consolidation; 18 participants; MD -1.50 bleeding events, 95% CI -3.25 to 0.25; very low-quality evidence). The two other studies suggested bleeding was reduced in the antifibrinolytic study arm, but this was statistically significant in only one of these two studies.Two studies reported thromboembolism and no events occurred (68 participants, very low-quality evidence).All three studies reported a reduction in platelet transfusion usage (three studies, 86 participants;
-
3.
Alternative agents to prophylactic platelet transfusion for preventing bleeding in people with thrombocytopenia due to chronic bone marrow failure: a meta-analysis and systematic review
Desborough M, Hadjinicolaou AV, Chaimani A, Trivella M, Vyas P, Doree C, Hopewell S, Stanworth SJ, Estcourt LJ
The Cochrane Database of Systematic Reviews. 2016;((10)):CD012055.
Abstract
People with thrombocytopenia due to bone marrow failure are vulnerable to bleeding. Platelet transfusions have limited efficacy in this setting and alternative agents that could replace, or reduce platelet transfusion, and are effective at reducing bleeding are needed. To compare the relative efficacy of different interventions for patients with thrombocytopenia due to chronic bone marrow failure and to derive a hierarchy of potential alternative treatments to platelet transfusions. We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (the Cochrane Library 2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1980) and ongoing trial databases to 27 April 2016. We included randomised controlled trials in people with thrombocytopenia due to chronic bone marrow failure who were allocated to either an alternative to platelet transfusion (artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, recombinant activated factor VII (rFVIIa), desmopressin (DDAVP), recombinant factor XIII (rFXIII), recombinant interleukin (rIL)6 or rIL11, or thrombopoietin (TPO) mimetics) or a comparator (placebo, standard of care or platelet transfusion). We excluded people undergoing intensive chemotherapy or stem cell transfusion. Two review authors independently screened search results, extracted data and assessed trial quality. We estimated summary risk ratios (RR) for dichotomous outcomes. We planned to use summary mean differences (MD) for continuous outcomes. All summary measures are presented with 95% confidence intervals (CI).We could not perform a network meta-analysis because the included studies had important differences in the baseline severity of disease for the participants and in the number of participants undergoing chemotherapy. This raised important concerns about the plausibility of the transitivity assumption in the final dataset and we could not evaluate transitivity statistically because of the small number of trials per comparison. Therefore, we could only perform direct pairwise meta-analyses of included interventions.We employed a random-effects model for all analyses. We assessed statistical heterogeneity using the I2 statistic and its 95% CI. The risk of bias of each study included was assessed using the Cochrane 'Risk of bias' tool. The quality of the evidence was assessed using GRADE methods. We identified seven completed trials (472 participants), and four ongoing trials (recruiting 837 participants) which are due to be completed by December 2020. Of the seven completed trials, five trials (456 participants) compared a TPO mimetic versus placebo (four romiplostim trials, and one eltrombopag trial), one trial (eight participants) compared DDAVP with placebo and one trial (eight participants) compared tranexamic acid with placebo. In the DDAVP trial, the only outcome reported was the bleeding time. In the tranexamic acid trial there were methodological flaws and bleeding definitions were subject to significant bias. Consequently, these trials could not be incorporated into the quantitative synthesis. No randomised trial of artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, rFVIIa, rFXIII, rIL6 or rIL11 was identified.We assessed all five trials of TPO mimetics included in this review to be at high risk of bias because the trials were funded by the manufacturers of the TPO mimetics and the authors had financial stakes in the sponsoring companies.The GRADE quality of the evidence was very low to moderate across the different outcomes.There was insufficient evidence to detect a difference in the number of participants with at least one bleeding episode between TPO mimetics and placebo (RR 0.86, 95% CI 0.56 to 1.31, four trials, 206 participants, low-quality evidence).There was insufficient evidence to detect a difference in the risk of a life-threatening bleed between those treated with a TPO mimetic and placebo (RR 0.31, 95% CI 0.04 to 2.26, one tri
-
4.
Alternatives, and adjuncts, to prophylactic platelet transfusion for people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation
Desborough M, Estcourt LJ, Doree C, Trivella M, Hopewell S, Stanworth SJ, Murphy MF
The Cochrane Database of Systematic Reviews. 2016;((8)):CD010982.
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in people with thrombocytopenia. Although considerable advances have been made in platelet transfusion therapy since the mid-1970s, some areas continue to provoke debate especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding. OBJECTIVES To determine whether agents that can be used as alternatives, or adjuncts, to platelet transfusions for people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation are safe and effective at preventing bleeding. SEARCH METHODS We searched 11 bibliographic databases and four ongoing trials databases including the Cochrane Central Register of Controlled Trials (CENTRAL, 2016, Issue 4), MEDLINE (OvidSP, 1946 to 19 May 2016), Embase (OvidSP, 1974 to 19 May 2016), PubMed (e-publications only: searched 19 May 2016), ClinicalTrials.gov, World Health Organization (WHO) ICTRP and the ISRCTN Register (searched 19 May 2016). SELECTION CRITERIA We included randomised controlled trials in people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation who were allocated to either an alternative to platelet transfusion (artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, recombinant activated factor VII, desmopressin (DDAVP), or thrombopoietin (TPO) mimetics) or a comparator (placebo, standard care or platelet transfusion). We excluded studies of antifibrinolytic drugs, as they were the focus of another review. DATA COLLECTION AND ANALYSIS Two review authors screened all electronically derived citations and abstracts of papers identified by the review search strategy. Two review authors assessed risk of bias in the included studies and extracted data independently. MAIN RESULTS We identified 16 eligible trials. Four trials are ongoing and two have been completed but the results have not yet been published (trial completion dates: April 2012 to February 2017). Therefore, the review included 10 trials in eight references with 554 participants. Six trials (336 participants) only included participants with acute myeloid leukaemia undergoing intensive chemotherapy, two trials (38 participants) included participants with lymphoma undergoing intensive chemotherapy and two trials (180 participants) reported participants undergoing allogeneic stem cell transplantation. Men and women were equally well represented in the trials. The age range of participants included in the trials was from 16 years to 81 years. All trials took place in high-income countries. The manufacturers of the agent sponsored eight trials that were under investigation, and two trials did not report their source of funding.No trials assessed artificial platelet substitutes, fibrinogen concentrate, recombinant activated factor VII or desmopressin.Nine trials compared a TPO mimetic to placebo or standard care; seven of these used pegylated recombinant human megakaryocyte growth and differentiation factor (PEG-rHuMGDF) and two used recombinant human thrombopoietin (rhTPO).One trial compared platelet-poor plasma to platelet transfusion.We considered that all the trials included in this review were at high risk of bias and meta-analysis was not possible in seven trials due to problems with the way data were reported.We are very uncertain whether TPO mimetics reduce the number of participants with any bleeding episode (odds ratio (OR) 0.40, 95% confidence interval (CI) 0.10 to 1.62, one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce the risk of a life-threatening bleed after 30 days (OR 1.46, 95% CI 0.06 to 33.14, three trials, 209 participants, very low quality evidence); or after 90 days (OR 1.00, 95% CI 0.06 to 16.37, one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce platelet transfusion requirements after 30 days (mean difference -3.00 units, 95% CI
-
5.
Fresh frozen plasma for cardiovascular surgery
Desborough M, Sandu R, Brunskill SJ, Doree C, Trivella M, Montedori A, Abraha I, Stanworth S
Cochrane Database of Systematic Reviews.. 2015;((7)):CD007614.
Abstract
BACKGROUND Fresh frozen plasma (FFP) is a blood component containing procoagulant factors, which is sometimes used in cardiovascular surgery with the aim of reducing the risk of bleeding. The purpose of this review is to assess the risk of mortality for patients undergoing cardiovascular surgery who receive FFP. OBJECTIVES To evaluate the risk to benefit ratio of FFP transfusion in cardiovascular surgery for the treatment of bleeding patients or for prophylaxis against bleeding. SEARCH METHODS We searched 11 bibliographic databases and four ongoing trials databases including the Cochrane Central Register of Controlled Trials (CENTRAL, Issue 3, 2015), MEDLINE (OvidSP, 1946 to 21 April 2015), EMBASE (OvidSP, 1974 to 21 April 2015), PubMed (e-publications only: searched 21 April 2015), ClinicalTrials.gov, World Health Organization (WHO) ICTRP and the ISRCTN Register (searched 21 April 2015). We also searched the references of all identified trials and relevant review articles. We did not limit the searches by language or publication status. SELECTION CRITERIA We included randomised controlled trials in patients undergoing major cardiac or vascular surgery who were allocated to a FFP group or a comparator (no plasma or an active comparator, either clinical plasma (any type) or a plasma-derived blood product). We included participants of any age (neonates, children and adults). We excluded studies of plasmapheresis and plasma exchange. DATA COLLECTION AND ANALYSIS Two authors screened all electronically derived citations and abstracts of papers identified by the review search strategy. Two authors assessed risk of bias in the included studies and extracted data independently. We took care to note whether FFP was used therapeutically or prophylactically within each trial. MAIN RESULTS We included 15 trials, with a total of 755 participants for analysis in the review. Fourteen trials compared prophylactic use of FFP against no FFP. One study compared therapeutic use of two types of plasma. The timing of intervention varied, including FFP transfusion at the time of heparin neutralisation and stopping cardiopulmonary bypass (CPB) (seven trials), with CPB priming (four trials), after anaesthesia induction (one trial) and postoperatively (two trials). Twelve trials excluded patients having emergency surgery and nine excluded patients with coagulopathies.Overall the trials were small, with only four reporting an a priori sample size calculation. No trial was powered to determine changes in mortality as a primary outcome. There was either high risk of bias, or unclear risk, in the majority of trials included in this review.There was no difference in the number of deaths between the intervention arms in the six trials (with 287 patients) reporting mortality (very low quality evidence). There was also no difference in blood loss in the first 24 hours for neonatal/paediatric patients (four trials with 138 patients; low quality evidence): mean difference (MD) -1.46 ml/kg (95% confidence interval (CI) -4.7 to 1.78 ml/kg); or adult patients (one trial with 120 patients): MD -12.00 ml (95% CI -101.16 to 77.16 ml).Transfusion with FFP was inferior to control for preventing patients receiving any red cell transfusion: Peto odds ratio (OR) 2.57 (95% CI 1.30 to 5.08; moderate quality evidence). There was a difference in prothrombin time within two hours of FFP transfusion in eight trials (with 210 patients; moderate quality evidence) favouring the FFP arm: MD -0.71 seconds (95% CI -1.28 to -0.13 seconds). There was no difference in the risk of returning to theatre for reoperation (eight trials with 398 patients; moderate quality evidence): Peto OR 0.81 (95% CI 0.26 to 2.57). Only one included study reported adverse events as an outcome and reported no significant adverse events following FFP transfusion. AUTHORS' CONCLUSIONS This review has found no evidence to support the prophylactic administration of FFP to patients without coagulopathy undergoing elective cardiac surgery. There was insufficient evidence about treatment of p
-
6.
Comparison of different platelet transfusion thresholds prior to insertion of central lines in patients with thrombocytopenia
Estcourt LJ, Desborough M, Hopewell S, Doree C, Stanworth SJ
Cochrane Database of Systematic Reviews.. 2015;((12)):CD011771.
Abstract
BACKGROUND Patients with a low platelet count (thrombocytopenia) often require the insertion of central lines (central venous catheters (CVCs)). CVCs have a number of uses; these include: administration of chemotherapy; intensive monitoring and treatment of critically-ill patients; administration of total parenteral nutrition; and long-term intermittent intravenous access for patients requiring repeated treatments. Current practice in many countries is to correct thrombocytopenia with platelet transfusions prior to CVC insertion, in order to mitigate the risk of serious procedure-related bleeding. However, the platelet count threshold recommended prior to CVC insertion varies significantly from country to country. This indicates significant uncertainty among clinicians of the correct management of these patients. The risk of bleeding after a central line insertion appears to be low if an ultrasound-guided technique is used. Patients may therefore be exposed to the risks of a platelet transfusion without any obvious clinical benefit. OBJECTIVES To assess the effects of different platelet transfusion thresholds prior to the insertion of a central line in patients with thrombocytopenia (low platelet count). SEARCH METHODS We searched for randomised controlled trials (RCTs) in CENTRAL (The Cochrane Library 2015, Issue 2), MEDLINE (from 1946), EMBASE (from 1974), the Transfusion Evidence Library (from 1950) and ongoing trial databases to 23 February 2015. SELECTION CRITERIA We included RCTs involving transfusions of platelet concentrates, prepared either from individual units of whole blood or by apheresis, and given to prevent bleeding in patients of any age with thrombocytopenia requiring insertion of a CVC. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by The Cochrane Collaboration. MAIN RESULTS One RCT was identified that compared different platelet transfusion thresholds prior to insertion of a CVC in people with chronic liver disease. This study is still recruiting participants (expected recruitment: up to 165 participants) and is due to be completed in December 2017. There were no completed studies. There were no studies that compared no platelet transfusions to a platelet transfusion threshold. AUTHORS' CONCLUSIONS There is no evidence from RCTs to determine whether platelet transfusions are required prior to central line insertion in patients with thrombocytopenia, and, if a platelet transfusion is required, what is the correct platelet transfusion threshold. Further randomised trials with robust methodology are required to develop the optimal transfusion strategy for such patients. The one ongoing RCT involving people with cirrhosis will not be able to answer this review's questions, because it is a small study that assesses one patient group and does not address all of the comparisons included in this review. To detect an increase in the proportion of participants who had major bleeding from 1 in 100 to 2 in 100 would require a study containing at least 4634 participants (80% power, 5% significance).