0
selected
-
1.
Effect of Convalescent Plasma on Organ Support-Free Days in Critically Ill Patients With COVID-19: A Randomized Clinical Trial
Estcourt LJ, Turgeon AF, McQuilten ZK, McVerry BJ, Al-Beidh F, Annane D, Arabi YM, Arnold DM, Beane A, Bégin P, et al
Jama. 2021
-
-
-
Free full text
-
-
Editor's Choice
Abstract
IMPORTANCE The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive. OBJECTIVE To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTS The ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. INTERVENTIONS The immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). MAIN OUTCOMES AND MEASURES The primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, -1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. RESULTS Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11 secondary outcomes. Serious adverse events were reported in 3.0% (32/1075) of participants in the convalescent plasma group and in 1.3% (12/905) of participants in the no convalescent plasma group. CONCLUSIONS AND RELEVANCE Among critically ill adults with confirmed COVID-19, treatment with 2 units of high-titer, ABO-compatible convalescent plasma had a low likelihood of providing improvement in the number of organ support-free days. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02735707.
PICO Summary
Population
Critically ill patients with COVID-19 from 129 sites in 4 countries, enrolled in the ongoing REMAP-CAP trial (n= 2,011).
Intervention
2 units of high-titre, ABO-compatible convalescent plasma (n= 1,084).
Comparison
No convalescent plasma (n= 916).
Outcome
The median number of organ support-free days was 0 in the convalescent plasma group and 3 in the no convalescent plasma group. The in-hospital mortality rate was 37.3% for the convalescent plasma group and 38.4% for the no convalescent plasma group and the median number of days alive and free of organ support was 14 and 14, respectively. Serious adverse events were reported in 3% of participants in the convalescent plasma group and in 1.3% of participants in the no convalescent plasma group.
-
2.
A Post Hoc Analysis of Osmotherapy Use in the Erythropoietin in Traumatic Brain Injury Study-Associations With Acute Kidney Injury and Mortality
Skrifvars MB, Bailey M, Moore E, Mårtensson J, French C, Presneill J, Nichol A, Little L, Duranteau J, Huet O, et al
Critical care medicine. 2021
-
-
Free full text
-
Abstract
OBJECTIVES Mannitol and hypertonic saline are used to treat raised intracerebral pressure in patients with traumatic brain injury, but their possible effects on kidney function and mortality are unknown. DESIGN A post hoc analysis of the erythropoietin trial in traumatic brain injury (ClinicalTrials.gov NCT00987454) including daily data on mannitol and hypertonic saline use. SETTING Twenty-nine university-affiliated teaching hospitals in seven countries. PATIENTS A total of 568 patients treated in the ICU for 48 hours without acute kidney injury of whom 43 (7%) received mannitol and 170 (29%) hypertonic saline. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We categorized acute kidney injury stage according to the Kidney Disease Improving Global Outcome classification and defined acute kidney injury as any Kidney Disease Improving Global Outcome stage-based changes from the admission creatinine. We tested associations between early (first 2 d) mannitol and hypertonic saline and time to acute kidney injury up to ICU discharge and death up to 180 days with Cox regression analysis. Subsequently, acute kidney injury developed more often in patients receiving mannitol (35% vs 10%; p < 0.001) and hypertonic saline (23% vs 10%; p < 0.001). On competing risk analysis including factors associated with acute kidney injury, mannitol (hazard ratio, 2.3; 95% CI, 1.2-4.3; p = 0.01), but not hypertonic saline (hazard ratio, 1.6; 95% CI, 0.9-2.8; p = 0.08), was independently associated with time to acute kidney injury. In a Cox model for predicting time to death, both the use of mannitol (hazard ratio, 2.1; 95% CI, 1.1-4.1; p = 0.03) and hypertonic saline (hazard ratio, 1.8; 95% CI, 1.02-3.2; p = 0.04) were associated with time to death. CONCLUSIONS In this post hoc analysis of a randomized controlled trial, the early use of mannitol, but not hypertonic saline, was independently associated with an increase in acute kidney injury. Our findings suggest the need to further evaluate the use and choice of osmotherapy in traumatic brain injury.
-
3.
Age of red cells for transfusion and outcomes in critically ill adults
Cooper DJ, McQuilten ZK, Nichol A, Ady B, Aubron C, Bailey M, Bellomo R, Gantner D, Irving DO, Kaukonen KM, et al
The New England Journal of Medicine. 2017;377((19):):1858-1867
Abstract
Background It is uncertain whether the duration of red-cell storage affects mortality after transfusion among critically ill adults. Methods In an international, multicenter, randomized, double-blind trial, we assigned critically ill adults to receive either the freshest available, compatible, allogeneic red cells (short-term storage group) or standard-issue (oldest available), compatible, allogeneic red cells (long-term storage group). The primary outcome was 90-day mortality. Results From November 2012 through December 2016, at 59 centers in five countries, 4994 patients underwent randomization and 4919 (98.5%) were included in the primary analysis. Among the 2457 patients in the short-term storage group, the mean storage duration was 11.8 days. Among the 2462 patients in the long-term storage group, the mean storage duration was 22.4 days. At 90 days, there were 610 deaths (24.8%) in the short-term storage group and 594 (24.1%) in the long-term storage group (absolute risk difference, 0.7 percentage points; 95% confidence interval [CI], -1.7 to 3.1; P=0.57). At 180 days, the absolute risk difference was 0.4 percentage points (95% CI, -2.1 to 3.0; P=0.75). Most of the prespecified secondary measures showed no significant between-group differences in outcome. Conclusions The age of transfused red cells did not affect 90-day mortality among critically ill adults. (Funded by the Australian National Health and Medical Research Council and others; TRANSFUSE Australian and New Zealand Clinical Trials Registry number, ACTRN12612000453886 ; ClinicalTrials.gov number, NCT01638416 .).
-
4.
Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial
Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, Bailey M, Cooper DJ, Duranteau J, Huet O, et al
Lancet. 2015;386((10012)):2499-506.
Abstract
BACKGROUND Erythropoietin might have neurocytoprotective effects. In this trial, we studied its effect on neurological recovery, mortality, and venous thrombotic events in patients with traumatic brain injury. METHODS Erythropoietin in Traumatic Brain Injury (EPO-TBI) was a double-blind, placebo-controlled trial undertaken in 29 centres (all university-affiliated teaching hospitals) in seven countries (Australia, New Zealand, France, Germany, Finland, Ireland, and Saudi Arabia). Within 24 h of brain injury, 606 patients were randomly assigned by a concealed web-based computer-generated randomisation schedule to erythropoietin (40,000 units subcutaneously) or placebo (09% sodium chloride subcutaneously) once per week for a maximum of three doses. Randomisation was stratified by severity of traumatic brain injury (moderate vs severe) and participating site. With the exception of designated site pharmacists, the site dosing nurses at all sites, and the pharmacists at the central pharmacy in France, all study personnel, patients, and patients' relatives were masked to treatment assignment. The primary outcome, assessed at 6 months by modified intention-to-treat analysis, was improvement in the patients' neurological status, summarised as a reduction in the proportion of patients with an Extended Glasgow Outcome Scale (GOS-E) of 1-4 (death, vegetative state, and severe disability). Two equally spaced preplanned interim analyses were done (after 202 and 404 participants were enrolled). This study is registered with ClinicalTrials.gov, number NCT00987454. FINDINGS Between May 3, 2010, and Nov 1, 2014, 606 patients were enrolled and randomly assigned to erythropoietin (n=308) or placebo (n=298). Ten of these patients (six in the erythropoietin group and four in the placebo group) were lost to follow up at 6 months; therefore, data for the primary outcome analysis was available for 596 patients (302 in the erythropoietin group and 294 in the placebo group). Compared with placebo, erythropoietin did not reduce the proportion of patients with a GOS-E level of 1-4 (134 [44%] of 302 patients in the erythropoietin group vs 132 [45%] of 294 in the placebo group; relative risk [RR] 099 [95% CI 083-118], p=090). In terms of safety, erythropoietin did not significantly affect 6-month mortality versus placebo (32 [11%] of 305 patients had died at 6 months in the erythropoietin group vs 46 [16%] of 297 [16%] in the placebo group; RR 068 [95% CI 044-103], p=007) or increase the occurrence of deep venous thrombosis of the lower limbs (48 [16%] of 305 vs 54 [18%] of 298; RR 087 [95% CI 061-124], p=044). INTERPRETATION Following moderate or severe traumatic brain injury, erythropoietin did not reduce the number of patients with severe neurological dysfunction (GOS-E level 1-4) or increase the incidence of deep venous thrombosis of the lower limbs. The effect of erythropoietin on mortality remains uncertain. FUNDING The National Health and Medical Research Council and the Transport Accident Commission.Copyright © 2015 Elsevier Ltd. All rights reserved.
-
5.
Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis
Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R
Intensive Care Medicine. 2011;37((1):):86-96.
Abstract
PURPOSE To determine the effect of random assignment to fluid resuscitation with albumin or saline on organ function and mortality in patients with severe sepsis. METHODS Pre-defined subgroup analysis of a randomized controlled trial conducted in the intensive care units of 16 hospitals in Australia and New Zealand. RESULTS Of 1,218 patients with severe sepsis at baseline, 603 and 615 were assigned to receive albumin and saline, respectively. The two groups had similar baseline characteristics. During the first 7 days mean arterial pressure was similar in the two groups, but patients assigned albumin had a lower heart rate on days 1 and 3 (p = 0.002 and p = 0.03, respectively) and a higher central venous pressure on days 1-3 (p < 0.005 each day). There was no difference in the renal or total Sequential Organ Failure Assessment score of the two groups; 113/603 (18.7%) of patients assigned albumin were treated with renal replacement therapy compared to 112/615 (18.2%) assigned saline (p = 0.98). The unadjusted relative risk of death for albumin versus saline was 0.87 [95% confidence interval (CI) 0.74-1.02] for patients with severe sepsis and 1.05 (0.94-1.17) for patients without severe sepsis (p = 0.06 for heterogeneity). From multivariate logistic regression analysis adjusting for baseline factors in patients with complete baseline data (919/1,218, 75.5%), the adjusted odds ratio for death for albumin versus saline was 0.71 (95% CI: 0.52-0.97; p = 0.03). CONCLUSIONS Administration of albumin compared to saline did not impair renal or other organ function and may have decreased the risk of death.