-
1.
Efficacy and safety of the second in-hospital dose of tranexamic acid after receiving the prehospital dose: double-blind randomized controlled clinical trial in a level 1 trauma center
El-Menyar A, Ahmed K, Hakim S, Kanbar A, Mathradikkal S, Siddiqui T, Jogol H, Younis B, Taha I, Mahmood I, et al
European journal of trauma and emergency surgery : official publication of the European Trauma Society. 2021
Abstract
BACKGROUND Prehospital administration of tranexamic acid (TXA) to injured patients is increasing worldwide. However, optimal TXA dose and need of a second infusion on hospital arrival remain undetermined. We investigated the efficacy and safety of the second in-hospital dose of TXA in injured patients receiving 1 g of TXA in the prehospital setting. We hypothesized that a second in-hospital dose of TXA improves survival of trauma patients. METHODS A prospective, double-blind, placebo-controlled randomized, clinical trial included adult trauma patients receiving 1 g of TXA in the prehospital settings. Patients were then blindly randomized to Group I (second 1-g TXA) and Group II (placebo) on hospital arrival. The primary outcome was 24-h (early) and 28-day (late) mortality. Secondary outcomes were thromboembolic events, blood transfusions, hospital length of stay (HLOS) and organs failure (MOF). RESULTS A total of 220 patients were enrolled, 110 in each group. The TXA and placebo groups had a similar early [OR 1.000 (0.062-16.192); p = 0.47] and late mortality [OR 0.476 (95% CI 0.157-1.442), p = 0.18].The cause of death (n = 15) was traumatic brain injury (TBI) in 12 patients and MOF in 3 patients. The need for blood transfusions in the first 24 h, number of transfused blood units, HLOS, thromboembolic events and multiorgan failure were comparable in the TXA and placebo groups. In seriously injured patients (injury severity score > 24), the MTP activation was higher in the placebo group (31.3% vs 11.10%, p = 0.13), whereas pulmonary embolism (6.9% vs 2.9%, p = 0.44) and late mortality (27.6% vs 14.3%, p = 0.17) were higher in the TXA group but did not reach statistical significance. CONCLUSION The second TXA dose did not change the mortality rate, need for blood transfusion, thromboembolic complications, organ failure and HLOS compared to a single prehospital dose and thus its routine administration should be revisited in larger and multicenter studies. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03846973.
-
2.
The effect of massive transfusion protocol implementation on the survival of trauma patients: a systematic review and meta-analysis
Consunji R, Elseed A, El-Menyar A, Sathian B, Rizoli S, Al-Thani H, Peralta R
Blood transfusion = Trasfusione del sangue. 2020
-
-
-
Free full text
-
Editor's Choice
Abstract
BACKGROUND Massive transfusion protocol (MTP) has been widely adopted for the care of bleeding trauma patients but its actual effectiveness is unclear. An earlier meta-analysis on the implementation of MTP for injured patients from 1990 to 2013 reported that only 2 out of 8 studies showed statistical improvement in survival. This study aimed to conduct an updated systematic review and meta-analysis to evaluate the effect of implementing an MTP on the mortality of trauma patients. MATERIALS AND METHODS MEDLINE, PubMed, Cochrane Library and Google scholar databases were systematically searched for relevant studies published from 1(st) January 2008 to 30(th) September 2019 using a combination of keywords and additional manual searching of reference lists. Inclusion criteria were: original study in English, study population including trauma patients, and comparison of mortality outcomes before and after institutional implementation of an MTP. Primary outcomes were 24-hour, 30-day, and overall mortality. RESULTS Fourteen studies met inclusion criteria, analysing outcomes from 3,201 trauma patients. There was a wide range of outcomes, patient populations, and process indicators utilised by the different authors. MTP significantly reduced the overall mortality for trauma patients (OR 0.71 [0.56-0.90]). No significant reduction was seen in either the 24-hour mortality (OR 0.81 [0.57-1.14]) or the 30-day mortality (OR 0.73 [0.46-1.16]). However, when mortality timing was unspecified, mortality was statistically reduced (OR 0.69 [0.55-0.86]). DISCUSSION The present study found a significant reduction in mortality following MTP implementation and thus it should be recommended to all institutions managing acutely injured patients. To better identify which elements of an MTP contribute to this effect, we encourage the use of standard nomenclature, indicators, protocols and patient populations in all future MTP studies.
PICO Summary
Population
Trauma patients (14 studies, n= 3201).
Intervention
Implementation of a massive transfusion protocol (MTP) on the mortality of trauma patients.
Comparison
Outcome
There was a wide range of outcomes, patient populations, and process indicators utilised by the different authors. MTP significantly reduced the overall mortality for trauma patients. No significant reduction was seen in either the 24-hour mortality or the 30-day mortality. However, when mortality timing was unspecified, mortality was statistically reduced.
-
3.
Effect of Out-of-Hospital Tranexamic Acid vs Placebo on 6-Month Functional Neurologic Outcomes in Patients With Moderate or Severe Traumatic Brain Injury
Rowell SE, Meier EN, McKnight B, Kannas D, May S, Sheehan K, Bulger EM, Idris AH, Christenson J, Morrison LJ, et al
Jama. 2020;324(10):961-974
-
-
-
Free full text
-
-
Editor's Choice
Abstract
IMPORTANCE Traumatic brain injury (TBI) is the leading cause of death and disability due to trauma. Early administration of tranexamic acid may benefit patients with TBI. OBJECTIVE To determine whether tranexamic acid treatment initiated in the out-of-hospital setting within 2 hours of injury improves neurologic outcome in patients with moderate or severe TBI. DESIGN, SETTING, AND PARTICIPANTS Multicenter, double-blinded, randomized clinical trial at 20 trauma centers and 39 emergency medical services agencies in the US and Canada from May 2015 to November 2017. Eligible participants (N = 1280) included out-of-hospital patients with TBI aged 15 years or older with Glasgow Coma Scale score of 12 or less and systolic blood pressure of 90 mm Hg or higher. INTERVENTIONS Three interventions were evaluated, with treatment initiated within 2 hours of TBI: out-of-hospital tranexamic acid (1 g) bolus and in-hospital tranexamic acid (1 g) 8-hour infusion (bolus maintenance group; n = 312), out-of-hospital tranexamic acid (2 g) bolus and in-hospital placebo 8-hour infusion (bolus only group; n = 345), and out-of-hospital placebo bolus and in-hospital placebo 8-hour infusion (placebo group; n = 309). MAIN OUTCOMES AND MEASURES The primary outcome was favorable neurologic function at 6 months (Glasgow Outcome Scale-Extended score >4 [moderate disability or good recovery]) in the combined tranexamic acid group vs the placebo group. Asymmetric significance thresholds were set at 0.1 for benefit and 0.025 for harm. There were 18 secondary end points, of which 5 are reported in this article: 28-day mortality, 6-month Disability Rating Scale score (range, 0 [no disability] to 30 [death]), progression of intracranial hemorrhage, incidence of seizures, and incidence of thromboembolic events. RESULTS Among 1063 participants, a study drug was not administered to 96 randomized participants and 1 participant was excluded, resulting in 966 participants in the analysis population (mean age, 42 years; 255 [74%] male participants; mean Glasgow Coma Scale score, 8). Of these participants, 819 (84.8%) were available for primary outcome analysis at 6-month follow-up. The primary outcome occurred in 65% of patients in the tranexamic acid groups vs 62% in the placebo group (difference, 3.5%; [90% 1-sided confidence limit for benefit, -0.9%]; P = .16; [97.5% 1-sided confidence limit for harm, 10.2%]; P = .84). There was no statistically significant difference in 28-day mortality between the tranexamic acid groups vs the placebo group (14% vs 17%; difference, -2.9% [95% CI, -7.9% to 2.1%]; P = .26), 6-month Disability Rating Scale score (6.8 vs 7.6; difference, -0.9 [95% CI, -2.5 to 0.7]; P = .29), or progression of intracranial hemorrhage (16% vs 20%; difference, -5.4% [95% CI, -12.8% to 2.1%]; P = .16). CONCLUSIONS AND RELEVANCE Among patients with moderate to severe TBI, out-of-hospital tranexamic acid administration within 2 hours of injury compared with placebo did not significantly improve 6-month neurologic outcome as measured by the Glasgow Outcome Scale-Extended. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01990768.
PICO Summary
Population
Out-of-hospital patients with traumatic brain injury aged 15 years or older (n= 1280).
Intervention
Bolus maintenance group: out-of-hospital tranexamic acid (1 g) bolus and in-hospital tranexamic acid (1 g) 8-hour infusion (n = 312).
Comparison
Bolus only group: out-of-hospital tranexamic acid (2 g) bolus and in-hospital placebo 8-hour infusion (n = 345). Placebo group: out-of-hospital placebo bolus and in-hospital placebo 8-hour infusion (n = 309).
Outcome
A total of 819 participants were available for primary outcome analysis at 6-month follow-up. The primary outcome (favorable neurologic function at 6 months) occurred in 65% of patients in the tranexamic acid groups vs 62% in the placebo group. There was no statistically significant difference in 28-day mortality between the tranexamic acid groups vs the placebo group (14% vs 17%); 6-month Disability Rating Scale score (6.8 vs 7.6); or progression of intracranial hemorrhage (16% vs 20%).
-
4.
TXA Administration in the Field Does Not Affect Admission TEG after Traumatic Brain Injury
Dixon AL, McCully BH, Rick EA, Dewey E, Farrell DH, Morrison LJ, McMullan J, Robinson BRH, Callum J, Tibbs B, et al
The journal of trauma and acute care surgery. 2020
Abstract
BACKGROUND No FDA-approved medication improves outcomes following traumatic brain injury (TBI). A forthcoming clinical trial that evaluated the effects of two prehospital tranexamic acid (TXA) dosing strategies compared with placebo demonstrated no differences in thromboelastography (TEG) values. We proposed to explore the impact of TXA on markers of coagulation and fibrinolysis in patients with moderate to severe TBI. METHODS Data were extracted from a placebo-controlled clinical trial in which patients ≥15 years old with TBI (Glascow Coma Scale 3-12) and systolic blood pressure ≥90 mmHg were randomized prehospital to receive placebo bolus/placebo infusion (Placebo), 1 gram (g) TXA bolus/1g TXA infusion (Bolus Maintenance [BM]); or 2g TXA bolus/placebo infusion (Bolus Only [BO]). TEG was performed and coagulation measures including prothrombin time (PT), activated partial thromboplastin time (aPTT), international ratio (INR), fibrinogen, D-dimer, plasmin anti-plasmin (PAP), thrombin anti-thrombin (TAT), tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) were quantified at admission and six hours later. RESULTS Of 966 patients receiving study drug, 700 had labs drawn at admission and six hours later. There were no statistically significant differences in TEG values, including LY30, between groups (p>0.05). No differences between PT, aPTT, INR, fibrinogen, TAT, tPA, and PAI-1 were demonstrated across treatment groups. Concentrations of D-dimer in TXA treatment groups were less than placebo at six hours (p<0.001). Concentrations of PAP were less in TXA treatment groups than placebo on admission (p<0.001) and six hours (p=0.02). No differences in D-dimer and PAP were observed between BM and BO. CONCLUSION While D-dimer and PAP levels reflect a lower degree of fibrinolysis following prehospital administration of TXA when compared to placebo in a large prehospital trial of patients with TBI, TEG obtained on admission and six hours later did not demonstrate any differences in fibrinolysis between the two TXA dosing regimens and placebo. LEVEL OF EVIDENCE III; Diagnostic.
-
5.
Earlier time to hemostasis is associated with decreased mortality and rate of complications: Results from the Pragmatic Randomized Optimal Platelet and Plasma Ratio trial
Chang R, Kerby JD, Kalkwarf KJ, Van Belle G, Fox EE, Cotton BA, Cohen MJ, Schreiber MA, Brasel K, Bulger EM, et al
The journal of trauma and acute care surgery. 2019;87(2):342-349
-
-
Free full text
-
Abstract
BACKDROP Clinicians intuitively recognize that faster time to hemostasis is important in bleeding trauma patients, but these times are rarely reported. METHODS Prospectively collected data from the Pragmatic Randomized Optimal Platelet and Plasma Ratios trial were analyzed. Hemostasis was predefined as no intraoperative bleeding requiring intervention in the surgical field or resolution of contrast blush on interventional radiology (IR). Patients who underwent an emergent (within 90 minutes) operating room (OR) or IR procedure were included. Mixed-effects Poisson regression with robust error variance (controlling for age, Injury Severity Score, treatment arm, injury mechanism, base excess on admission [missing values estimated by multiple imputation], and time to OR/IR as fixed effects and study site as a random effect) with modified Bonferroni corrections tested the hypothesis that decreased time to hemostasis was associated with decreased mortality and decreased incidence of acute kidney injury (AKI), acute respiratory distress syndrome (ARDS), multiple-organ failure (MOF), sepsis, and venous thromboembolism. RESULTS Of 680 enrolled patients, 468 (69%) underwent an emergent procedure. Patients with decreased time to hemostasis were less severely injured, had less deranged base excess on admission, and lower incidence of blunt trauma (all p < 0.05). In 408 (87%) patients in whom hemostasis was achieved, every 15-minute decrease in time to hemostasis was associated with decreased 30-day mortality (RR, 0.97; 95% confidence interval [CI], 0.94-0.99), AKI (RR, 0.97; 95% CI, 0.96-0.98), ARDS (RR, 0.98; 95% CI, 0.97-0.99), MOF (RR, 0.94; 95% CI, 0.91-0.97), and sepsis (RR, 0.98; 95% CI, 0.96-0.99), but not venous thromboembolism (RR, 0.99; 95% CI, 0.96-1.03). CONCLUSION Earlier time to hemostasis was independently associated with decreased incidence of 30-day mortality, AKI, ARDS, MOF, and sepsis in bleeding trauma patients. Time to hemostasis should be considered as an endpoint in trauma studies and as a potential quality indicator. LEVEL OF EVIDENCE Therapeutic/care management, level III.
-
6.
Review of Existing Scoring Systems For Massive Blood Transfusion in Trauma Patients: Where Do We Stand?
El-Menyar A, Mekkodathil A, Abdelrahman H, Latifi R, Galwankar S, Al-Thani H, Rizoli S
Shock (Augusta, Ga.). 2019
Abstract
BACKGROUND Uncontrolled bleeding is the main cause of the potential preventable death in trauma patients. Accordingly, we reviewed all the existing scores for massive transfusion posttraumatic hemorrhage and summarized their characteristics, thus making it easier for the reader to have a global view of these scores - how they were created, their accuracy and to which population they apply. METHODS A narrative review with a systematic search method to retrieve the journal articles on the predictive scores or models for massive transfusion was carried out. A literature search using PubMed, SCOPUS and Google scholar was performed using relevant keywords in different combinations. The keywords used were "massive transfusion", "score", "model", "trauma" and "hemorrhage" in different combinations. The search was limited for full-text articles published in English language, human species and for the duration from 01 January, 1998 to 30 November, 2018. RESULTS The database search yielded 295 articles. The search was then restricted to the inclusion criteria which retrieved 241 articles. Duplicates were removed and full-texts were assessed for the eligibility to include in the review which resulted in inclusion of 24 articles. These articles identified 24 scoring systems including modified or revised scores. Different models and scores for identifying patients requiring massive transfusion in military and civilian settings have been described. Many of these scorings were complex with difficult calculation, while some were simple and easy to remember. CONCLUSIONS The current prevailing practice that is best described as institutional or provider centered should be supplemented with score based protocol with auditing and monitoring tools to refine it. This review summarizes the current scoring models in predicting the need for MT in civilian and military trauma. Several questions remain open; i.e., do we need to develop new score, merge scores, modify scores or adopt existing score for certain trauma setting?
-
7.
The impact of hypothermia on outcomes in massively transfused patients
Lester ELW, Fox EE, Holcomb JB, Brasel KJ, Bulger EM, Cohen MJ, Cotton BA, Fabian TC, Kerby JD, O'Keefe T, et al
The Journal of Trauma and Acute Care Surgery. 2018
Abstract
BACKGROUND Hypothermia is associated with poor outcomes after injury. The relationship between hypothermia during contemporary large volume resuscitation and blood product consumption is unknown. We evaluated this association, and the predictive value of hypothermia on mortality. METHODS Patients predicted to receive massive transfusion at 12 Level-1 trauma centers, randomized in the PROPPR trial, were grouped into those who were hypothermic (<36 degrees Celsius) or normothermic (36-38.5 degrees Celsius) within the first 6 hours of Emergency department arrival. The impact of hypothermia or normothermia on the volume of blood product required during the first 24 hours was determined via negative binomial regression, adjusting for treatment arm, injury severity score, mechanism, demographics, pre-emergency department fluid volume, blood administered prior to becoming hypothermic, pulse and systolic blood pressure on arrival and the time exposed to hypothermic or normothermic temperatures. RESULTS Of 680 patients, 590 had a temperature measured during the first 6 hours in hospital, and 399 experienced hypothermia. The mean number of red blood cell units given to all patients in the first 24 hours of admission was 8.8 (95% CI 7.9-9.6). In multivariable analysis, every one-degree decrease in temperature below 36.0 degrees was associated with a 10% increase (incidence rate ratio [IRR] 0.90; 95% CI 0.89-0.92; p<0.00) in consumption of red blood cells during the first 24 hours of admission. There was no association between red blood cell administration and a temperature above 36 degrees. Hypothermia on arrival was an independent predictor of mortality, with an adjusted odds ratio of 2.7 (95% CI 1.7-4.5; p<0.00) for 24-hour and 1.8 (95% CI 1.3-2.4; p<0.00) for 30-day mortality. CONCLUSION Hypothermia is associated with increased in blood product consumption and mortality. These findings support the maintenance of normothermia in trauma patients, and suggests that further investigation on the impact of cooling or rewarming during massive transfusion is warranted. LEVEL OF EVIDENCE III Prognostic.
-
8.
A systematic review on the rotational thrombelastometry (ROTEM(R)) values for the diagnosis of coagulopathy, prediction and guidance of blood transfusion and prediction of mortality in trauma patients
Veigas PV, Callum J, Rizoli S, Nascimento B, da Luz LT
Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2016;24((1)):114.
Abstract
INTRODUCTION Viscoelastic assays have been promoted as an improvement over traditional coagulation tests in the management of trauma patients. Rotational thromboelastometry (ROTEM(R)) has been used to diagnose coagulopathy and guide hemostatic therapy in trauma. This systematic review of clinical studies in trauma investigates the ROTEM(R) parameters thresholds used for the diagnosing coagulopathy, predicting and guiding transfusion and predicting mortality. METHODS Systematic literature search was performed using MEDLINE, EMBASE and Cochrane databases. We included studies without restricting year of publication, language or geographic location. Original studies reporting the thresholds of ROTEM(R) parameters in the diagnosis or management of coagulopathy in trauma patients were included. Data on patient demographics, measures of coagulopathy, transfusion and mortality were extracted. We reported our findings according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Quality assessment and risk of bias were performed using Newcastle Ottawa Scale (NOS) and the quality assessment of diagnostic accuracy studies (QUADAS-2) tools, respectively. RESULTS A total of 13 observational studies involving 2835 adult trauma patients met the inclusion criteria. Nine studies were prospective and four were retrospective. There were no randomized controlled trials. The quality of the included studies was moderate (mean NOS 5.92, standard deviation 0.26). Using QUADAS-2, only 1 study (7.6 %) had low risk of bias in all domains, and 9 studies (69.2 %) had low risk of applicability concerns. Outcomes from 13 studies were grouped into three categories: diagnosis of coagulopathy (n = 10), prediction of massive transfusion or transfusion guidance (n = 6) and prediction of mortality (n = 6). Overall, specific ROTEM(R) parameters measured (clot amplitude and lysis) in the extrinsically activated test (EXTEM) and the fibrin-based extrinsically activated test (FIBTEM) were consistently associated with the diagnosis of coagulopathy, increased risk of bleeding and massive transfusion, and prediction of mortality. Presence of hyperfibrinolysis by ROTEM(R) was associated with increased mortality. CONCLUSIONS Most of the evidence indicates that abnormal EXTEM and FIBTEM clot amplitude (CA5, CA10) or maximal clot firmness (MCF) diagnose coagulopathy, and predict blood transfusion and mortality. The presence of fibrinolysis (abnormal lysis index [LI30] or maximum lysis [ML]) was also associated with mortality. ROTEM(R) thus, may be of value in the early management of trauma patients.
-
9.
Fibrinogen in the initial resuscitation of severe trauma (FiiRST): a randomized feasibility trial
Nascimento B, Callum J, Tien H, Peng H, Rizoli S, Karanicolas P, Alam A, Xiong W, Selby R, Garzon AM, et al
British Journal of Anaesthesia. 2016;117((6)):775-782.
Abstract
BACKGROUND Decreased plasma fibrinogen concentration shortly after injury is associated with higher blood transfusion needs and mortality. In North America and the UK, cryoprecipitate transfusion is the standard-of-care for fibrinogen supplementation during acute haemorrhage, which often occurs late during trauma resuscitation. Alternatively, fibrinogen concentrate (FC) can be beneficial in trauma resuscitation. However, the feasibility of its early infusion, efficacy and safety remain undetermined. The objective of this trial was to evaluate the feasibility, effect on clinical and laboratory outcomes and complications of early infusion of FC in trauma. METHODS Fifty hypotensive (systolic arterial pressure ≤100 mm Hg) adult patients requiring blood transfusion were randomly assigned to either 6 g of FC or placebo, between Oct 2014 and Nov 2015 at a tertiary trauma centre. The primary outcome, feasibility, was assessed by the proportion of patients receiving the intervention (FC or placebo) within one h of hospital arrival. Plasma fibrinogen concentration was measured, and 28-day mortality and incidence of thromboembolic events were assessed. RESULTS Overall, 96% (43/45) [95% CI 86-99%] of patients received the intervention within one h; 95% and 96% in the FC and placebo groups, respectively (P=1.00). Plasma fibrinogen concentrations remained higher in the FC group up to 12 h after admission with the largest difference at three h (2.9 mg dL - 1 vs. 1.8 mg dL - 1; P<0.01). The 28-day mortality and thromboembolic complications were similar between groups. CONCLUSIONS Early infusion of FC is feasible and increases plasma fibrinogen concentration during trauma resuscitation. Larger trials are justified.
-
10.
Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial
Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, del Junco DJ, Brasel KJ, Bulger EM, Callcut RA, et al
Jama. 2015;313((5):):471-82.
-
-
-
Free full text
-
Abstract
IMPORTANCE Severely injured patients experiencing hemorrhagic shock often require massive transfusion. Earlier transfusion with higher blood product ratios (plasma, platelets, and red blood cells), defined as damage control resuscitation, has been associated with improved outcomes; however, there have been no large multicenter clinical trials. OBJECTIVE To determine the effectiveness and safety of transfusing patients with severe trauma and major bleeding using plasma, platelets, and red blood cells in a 1:1:1 ratio compared with a 1:1:2 ratio. DESIGN, SETTING, AND PARTICIPANTS Pragmatic, phase 3, multisite, randomized clinical trial of 680 severely injured patients who arrived at 1 of 12 level I trauma centers in North America directly from the scene and were predicted to require massive transfusion between August 2012 and December 2013. INTERVENTIONS Blood product ratios of 1:1:1 (338 patients) vs 1:1:2 (342 patients) during active resuscitation in addition to all local standard-of-care interventions (uncontrolled). MAIN OUTCOMES AND MEASURES Primary outcomes were 24-hour and 30-day all-cause mortality. Prespecified ancillary outcomes included time to hemostasis, blood product volumes transfused, complications, incidence of surgical procedures, and functional status. RESULTS No significant differences were detected in mortality at 24 hours (12.7% in 1:1:1 group vs 17.0% in 1:1:2 group; difference, -4.2% [95% CI, -9.6% to 1.1%]; P=.12) or at 30 days (22.4% vs 26.1%, respectively; difference, -3.7% [95% CI, -10.2% to 2.7%]; P=.26). Exsanguination, which was the predominant cause of death within the first 24 hours, was significantly decreased in the 1:1:1 group (9.2% vs 14.6% in 1:1:2 group; difference, -5.4% [95% CI, -10.4% to -0.5%]; P=.03). More patients in the 1:1:1 group achieved hemostasis than in the 1:1:2 group (86% vs 78%, respectively; P=.006). Despite the 1:1:1 group receiving more plasma (median of 7 U vs 5 U, P<.001) and platelets (12 U vs 6 U, P<.001) and similar amounts of red blood cells (9 U) over the first 24 hours, no differences between the 2 groups were found for the 23 prespecified complications, including acute respiratory distress syndrome, multiple organ failure, venous thromboembolism, sepsis, and transfusion-related complications. CONCLUSIONS AND RELEVANCE Among patients with severe trauma and major bleeding, early administration of plasma, platelets, and red blood cells in a 1:1:1 ratio compared with a 1:1:2 ratio did not result in significant differences in mortality at 24 hours or at 30 days. However, more patients in the 1:1:1 group achieved hemostasis and fewer experienced death due to exsanguination by 24 hours. Even though there was an increased use of plasma and platelets transfused in the 1:1:1 group, no other safety differences were identified between the 2 groups. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01545232.
PICO Summary
Population
Patients with severe trauma and major bleeding in 12 trauma centres in North America (n= 680).
Intervention
Plasma, platelets, and red blood cells in a 1:1:1 ratio (n= 338).
Comparison
Plasma, platelets, and red blood cells in a 1:1:2 ratio (n= 342).
Outcome
No significant differences were detected in mortality at 24 hours (12.7% in 1:1:1 group vs. 17.0% in 1:1:2 group; difference -4.2% [95% CI -9.6% to 1.1%]) or at 30 days (22.4% vs. 26.1%, respectively; difference -3.7% [95% CI -10.2% to 2.7%]). Exsanguination, which was the predominant cause of death within the first 24 hours, was significantly decreased in the 1:1:1 group (9.2% vs. 14.6% in 1:1:2 group; difference -5.4% [95% CI -10.4% to -0.5%]). More patients in the 1:1:1 group achieved haemostasis than in the 1:1:2 group (86% vs. 78% respectively). Despite the 1:1:1 group receiving more plasma (median of 7 U vs. 5 U) and platelets (12 U vs. 6 U) and similar amounts of red blood cells (9 U) over the first 24 hours, no differences between the 2 groups were found for the 23 prespecified complications, including acute respiratory distress syndrome, multiple organ failure, venous thromboembolism, sepsis, and transfusion-related complications.