3 results
Filters
Sort By
Results Per Page
Filters
3 results
Download the following citations:
Email the following citations:
Print the following citations:
Editor's Choice
  • Eilertsen H
  • Menon CS
  • Law ZK
  • Chen C
  • Bath PM
  • et al.
Cochrane Database Syst Rev. 2023 Oct 23;10(10):CD005951 doi: 10.1002/14651858.CD005951.pub5.
POPULATION:

Adults with acute spontaneous intracerebral haemorrhage (ICH), (20 randomised controlled trials (RCTs), n= 4,652).

INTERVENTION:

Recombinant activated factor VII (rFVIIa), antifibrinolytic drugs, platelet transfusion, prothrombin complex concentrates (PCC).

COMPARISON:

Placebo, standard care, or an active comparator.

OUTCOME:

This systematic review was an update of a Cochrane Review first published in 2006, and last updated in 2018. Of the 20 included studies, 9 nine RCTs compared rFVIIa vs. placebo/standard care (n= 1,549), 8 RCTs compared antifibrinolytic drugs vs. placebo/standard care (n= 2,866), 1 RCT compared platelet transfusion vs. standard care (n= 190), and 2 RCTs compared PCC vs. fresh frozen plasma (FFP), (n= 47). Four (20%) RCTs were at low risk of bias in all criteria. The authors concluded that rFVIIa likely results in little to no difference in reducing death or dependence after spontaneous ICH with or without surgery; antifibrinolytic drugs result in little to no difference in reducing death or dependence after spontaneous ICH, but result in a slight reduction in ICH expansion within 24 hours; platelet transfusion likely increases death or dependence after antiplatelet-associated ICH; and the evidence is very uncertain about the effect of PCC compared to FFP on death or dependence after anticoagulant-associated ICH.

BACKGROUND:

Outcome after acute spontaneous (non-traumatic) intracerebral haemorrhage (ICH) is influenced by haematoma volume. ICH expansion occurs in about 20% of people with acute ICH. Early haemostatic therapy might improve outcome by limiting ICH expansion. This is an update of a Cochrane Review first published in 2006, and last updated in 2018.

OBJECTIVES:

To examine 1. the effects of individual classes of haemostatic therapies, compared with placebo or open control, in adults with acute spontaneous ICH, and 2. the effects of each class of haemostatic therapy according to the use and type of antithrombotic drug before ICH onset.

SEARCH METHODS:

We searched the Cochrane Stroke Trials Register, CENTRAL (2022, Issue 8), MEDLINE Ovid, and Embase Ovid on 12 September 2022. To identify further published, ongoing, and unpublished randomised controlled trials (RCTs), we scanned bibliographies of relevant articles and searched international registers of RCTs in September 2022.

SELECTION CRITERIA:

We included RCTs of any haemostatic intervention (i.e. procoagulant treatments such as clotting factor concentrates, antifibrinolytic drugs, platelet transfusion, or agents to reverse the action of antithrombotic drugs) for acute spontaneous ICH, compared with placebo, open control, or an active comparator.

DATA COLLECTION AND ANALYSIS:

We used standard Cochrane methods. Our primary outcome was death/dependence (modified Rankin Scale (mRS) 4 to 6) by day 90. Secondary outcomes were ICH expansion on brain imaging after 24 hours, all serious adverse events, thromboembolic adverse events, death from any cause, quality of life, mood, cognitive function, Barthel Index score, and death or dependence measured on the Extended Glasgow Outcome Scale by day 90.

MAIN RESULTS:

We included 20 RCTs involving 4652 participants: nine RCTs of recombinant activated factor VII (rFVIIa) versus placebo/open control (1549 participants), eight RCTs of antifibrinolytic drugs versus placebo/open control (2866 participants), one RCT of platelet transfusion versus open control (190 participants), and two RCTs of prothrombin complex concentrates (PCC) versus fresh frozen plasma (FFP) (47 participants). Four (20%) RCTs were at low risk of bias in all criteria. For rFVIIa versus placebo/open control for spontaneous ICH with or without surgery there was little to no difference in death/dependence by day 90 (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.74 to 1.05; 7 RCTs, 1454 participants; low-certainty evidence). We found little to no difference in ICH expansion between groups (RR 0.81, 95% CI 0.56 to 1.16; 4 RCTs, 220 participants; low-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 0.81, 95% CI 0.30 to 2.22; 2 RCTs, 87 participants; very low-certainty evidence; death from any cause: RR 0.78, 95% CI 0.56 to 1.08; 8 RCTs, 1544 participants; moderate-certainty evidence). For antifibrinolytic drugs versus placebo/open control for spontaneous ICH, there was no difference in death/dependence by day 90 (RR 1.00, 95% CI 0.93 to 1.07; 5 RCTs, 2683 participants; high-certainty evidence). We found a slight reduction in ICH expansion with antifibrinolytic drugs for spontaneous ICH compared to placebo/open control (RR 0.86, 95% CI 0.76 to 0.96; 8 RCTs, 2866 participants; high-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 1.02, 95% CI 0.75 to 1.39; 4 RCTs, 2599 participants; high-certainty evidence; death from any cause: RR 1.02, 95% CI 0.89 to 1.18; 8 RCTs, 2866 participants; high-certainty evidence). There was little to no difference in quality of life, mood, or cognitive function (quality of life: mean difference (MD) 0, 95% CI -0.03 to 0.03; 2 RCTs, 2349 participants; mood: MD 0.30, 95% CI -1.98 to 2.57; 2 RCTs, 2349 participants; cognitive function: MD -0.37, 95% CI -1.40 to 0.66; 1 RCTs, 2325 participants; all high-certainty evidence). Platelet transfusion likely increases death/dependence by day 90 compared to open control for antiplatelet-associated ICH (RR 1.29, 95% CI 1.04 to 1.61; 1 RCT, 190 participants; moderate-certainty evidence). We found little to no difference in ICH expansion between groups (RR 1.32, 95% CI 0.91 to 1.92; 1 RCT, 153 participants; moderate-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 1.46, 95% CI 0.98 to 2.16; 1 RCT, 190 participants; death from any cause: RR 1.42, 95% CI 0.88 to 2.28; 1 RCT, 190 participants; both moderate-certainty evidence). For PCC versus FFP for anticoagulant-associated ICH, the evidence was very uncertain about the effect on death/dependence by day 90, ICH expansion, all serious adverse events, and death from any cause between groups (death/dependence by day 90: RR 1.21, 95% CI 0.76 to 1.90; 1 RCT, 37 participants; ICH expansion: RR 0.54, 95% CI 0.23 to 1.22; 1 RCT, 36 participants; all serious adverse events: RR 0.27, 95% CI 0.02 to 3.74; 1 RCT, 5 participants; death from any cause: RR 0.49, 95% CI 0.16 to 1.56; 2 RCTs, 42 participants; all very low-certainty evidence).

AUTHORS' CONCLUSIONS:

In this updated Cochrane Review including 20 RCTs involving 4652 participants, rFVIIa likely results in little to no difference in reducing death or dependence after spontaneous ICH with or without surgery; antifibrinolytic drugs result in little to no difference in reducing death or dependence after spontaneous ICH, but result in a slight reduction in ICH expansion within 24 hours; platelet transfusion likely increases death or dependence after antiplatelet-associated ICH; and the evidence is very uncertain about the effect of PCC compared to FFP on death or dependence after anticoagulant-associated ICH. Thirteen RCTs are ongoing and are likely to increase the certainty of the estimates of treatment effect.

  • Hsieh TS
  • Chiu WK
  • Yang TF
  • Wang HJ
  • Chen C
Aesthetic Plast Surg. 2019 Dec;43(6):1615-1623 doi: 10.1007/s00266-019-01471-w.
BACKGROUND:

A number of studies have investigated the role of platelet-rich plasma (PRP) as an assisted therapy for atrophic acne scars. However, the results are diverse, and no up-to-date meta-analysis was found that exclusively examined atrophic acne scar treatment.

OBJECTIVES:

To perform a meta-analysis to assess improvements in the side effects of PRP and the effect of assisted therapy for atrophic acne scars.

METHODS:

This study followed PRISMA guidelines. A comprehensive search of the literature was carried out in September 2018 using the electronic databases of PubMed, EMBASE, MEDLINE, and the Cochrane Library.

RESULTS:

Seven articles were included in this review. All of the studies published utilized PRP as additive therapy. The major therapies included fractional carbon laser therapy and microneedling. Five studies (249 participants) reported four degrees of improvement on an improvement scale (degrees 3 and 4 were considered improvement in this analysis). Four studies (200 participants) reported mean improvement scores. A significantly higher degree of improvement was shown in the PRP group compared to the control group (OR = 8.19; 95% CI 4.32-15.52; p < 0.00001), as well as better mean improvement score (WMD = 23.73; 95% CI 18.60-28.87; p < 0.00001). Substantial heterogeneity was seen in the degree of improvement (I2 = 54% p = 0.07) and the mean improvement score (I2 = 75%; p = 0.008). There were overall fewer monitored side effects, including erythema and edema (in days), in the PRP groups; however, no significance was found.

CONCLUSIONS:

This review shows that PRP is a useful assisted therapy for atrophic acne scars, which can achieve better improvement.

LEVEL OF EVIDENCE III:

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  • Zeng WN
  • Liu JL
  • Wang FY
  • Chen C
  • Zhou Q
  • et al.
J Bone Joint Surg Am. 2018 Feb 21;100(4):295-304 doi: 10.2106/JBJS.16.01585.
BACKGROUND:

The reductions of perioperative blood loss and inflammatory response are important in total knee arthroplasty. Tranexamic acid reduced blood loss and the inflammatory response in several studies. However, the effect of epinephrine administration plus tranexamic acid has not been intensively investigated, to our knowledge. In this study, we evaluated whether the combined administration of low-dose epinephrine plus tranexamic acid reduced perioperative blood loss or inflammatory response further compared with tranexamic acid alone.

METHODS:

This randomized placebo-controlled trial consisted of 179 consecutive patients who underwent primary total knee arthroplasty. Patients were randomized into 3 interventions: Group IV received intravenous low-dose epinephrine plus tranexamic acid, Group TP received topical diluted epinephrine plus tranexamic acid, and Group CT received tranexamic acid alone. The primary outcome was perioperative blood loss on postoperative day 1. Secondary outcomes included perioperative blood loss on postoperative day 3, coagulation and fibrinolysis parameters (measured by thromboelastography), inflammatory cytokine levels, transfusion values (rate and volume), thromboembolic complications, length of hospital stay, wound score, range of motion, and Hospital for Special Surgery (HSS) score.

RESULTS:

The mean calculated total blood loss (and standard deviation) in Group IV was 348.1 ± 158.2 mL on postoperative day 1 and 458.0 ± 183.4 mL on postoperative day 3, which were significantly reduced (p < 0.05) compared with Group TP at 420.5 ± 188.4 mL on postoperative day 1 and 531.1 ± 231.4 mL on postoperative day 3 and Group CT at 520.4 ± 228.4 mL on postoperative day 1 and 633.7 ± 237.3 mL on postoperative day 3. Intravenous low-dose epinephrine exhibited a net anti-inflammatory activity in total knee arthroplasty and did not induce an obvious hypercoagulable status. Transfusion values were significantly reduced (p < 0.05) in Group IV, but no significant differences were observed in the incidence of thromboembolic complications, wound score, range of motion, and HSS score among the 3 groups (p > 0.05).

CONCLUSIONS:

The combined administration of low-dose epinephrine and tranexamic acid demonstrated an increased effect in reducing perioperative blood loss and the inflammatory response compared with tranexamic acid alone, with no apparent increased incidence of thromboembolic and other complications.

LEVEL OF EVIDENCE:

Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.