45 results
Filters
Sort By
Results Per Page
Filters
45 results
Download the following citations:
Email the following citations:
Print the following citations:
Editor's Choice
  • Gibbs VN
  • Champaneria R
  • Sandercock J
  • Welton NJ
  • Geneen LJ
  • et al.
Cochrane Database Syst Rev. 2024 Jan 16;1(1):CD013295 doi: 10.1002/14651858.CD013295.pub2.
POPULATION:

People undergoing elective hip or knee surgery (102 randomised controlled trials).

INTERVENTION:

Antifibrinolytics (tranexamic acid, aprotinin, epsilon-aminocaproic acid (EACA)), desmopressin, factor VIIa and XIII, fibrinogen, fibrin sealants and non-fibrin sealants.

COMPARISON:

Placebo or one of the active interventions.

OUTCOME:

The primary outcomes were the proportion of participants requiring an allogeneic blood transfusion and all‐cause mortality. Tranexamic acid was the most common drug studied. Mortality was not reported by many trials. Tranexamic acid interventions consistently ranked higher than other treatments such as aprotinin, EACA and topical fibrin sealants compared with placebo. The authors noted that mixed routes of administration (oral and intra‐articular, intravenous and intra‐articular) appear to be more effective than single routes of administration and higher doses of tranexamic acid feature higher up the treatment ranking hierarchy. The authors identified 30 ongoing studies.

BACKGROUND:

Hip and knee replacement surgery is a well-established means of improving quality of life, but is associated with a significant risk of bleeding. One-third of people are estimated to be anaemic before hip or knee replacement surgery; coupled with the blood lost during surgery, up to 90% of individuals are anaemic postoperatively. As a result, people undergoing orthopaedic surgery receive 3.9% of all packed red blood cell transfusions in the UK. Bleeding and the need for allogeneic blood transfusions has been shown to increase the risk of surgical site infection and mortality, and is associated with an increased duration of hospital stay and costs associated with surgery. Reducing blood loss during surgery may reduce the risk of allogeneic blood transfusion, reduce costs and improve outcomes following surgery. Several pharmacological interventions are available and currently employed as part of routine clinical care.

OBJECTIVES:

To determine the relative efficacy of pharmacological interventions for preventing blood loss in elective primary or revision hip or knee replacement, and to identify optimal administration of interventions regarding timing, dose and route, using network meta-analysis (NMA) methodology.

SEARCH METHODS:

We searched the following databases for randomised controlled trials (RCTs) and systematic reviews, from inception to 18 October 2022: CENTRAL (the Cochrane Library), MEDLINE (Ovid), Embase (Ovid), CINAHL (EBSCOhost), Transfusion Evidence Library (Evidentia), ClinicalTrials.gov and WHO International Clinical Trials Registry Platform (ICTRP).

SELECTION CRITERIA:

We included RCTs of people undergoing elective hip or knee surgery only. We excluded non-elective or emergency procedures, and studies published since 2010 that had not been prospectively registered (Cochrane Injuries policy). There were no restrictions on gender, ethnicity or age (adults only). We excluded studies that used standard of care as the comparator. Eligible interventions included: antifibrinolytics (tranexamic acid (TXA), aprotinin, epsilon-aminocaproic acid (EACA)), desmopressin, factor VIIa and XIII, fibrinogen, fibrin sealants and non-fibrin sealants.

DATA COLLECTION AND ANALYSIS:

We performed the review according to standard Cochrane methodology. Two authors independently assessed trial eligibility and risk of bias, and extracted data. We assessed the certainty of the evidence using CINeMA. We presented direct (pairwise) results using RevMan Web and performed the NMA using BUGSnet. We were interested in the following primary outcomes: need for allogenic blood transfusion (up to 30 days) and all-cause mortality (deaths occurring up to 30 days after the operation), and the following secondary outcomes: mean number of transfusion episodes per person (up to 30 days), re-operation due to bleeding (within seven days), length of hospital stay and adverse events related to the intervention received.

MAIN RESULTS:

We included a total of 102 studies. Twelve studies did not report the number of included participants; the other 90 studies included 8418 participants. Trials included more women (64%) than men (36%). In the NMA for allogeneic blood transfusion, we included 47 studies (4398 participants). Most studies examined TXA (58 arms, 56%). We found that TXA, given intra-articularly and orally at a total dose of greater than 3 g pre-incision, intraoperatively and postoperatively, ranked the highest, with an anticipated absolute effect of 147 fewer blood transfusions per 1000 people (150 fewer to 104 fewer) (53% chance of ranking 1st) within the NMA (risk ratio (RR) 0.02, 95% credible interval (CrI) 0 to 0.31; moderate-certainty evidence). This was followed by TXA given orally at a total dose of 3 g pre-incision and postoperatively (RR 0.06, 95% CrI 0.00 to 1.34; low-certainty evidence) and TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively (RR 0.10, 95% CrI 0.02 to 0.55; low-certainty evidence). Aprotinin (RR 0.59, 95% CrI 0.36 to 0.96; low-certainty evidence), topical fibrin (RR 0.86, CrI 0.25 to 2.93; very low-certainty evidence) and EACA (RR 0.60, 95% CrI 0.29 to 1.27; very low-certainty evidence) were not shown to be as effective compared with TXA at reducing the risk of blood transfusion. We were unable to perform an NMA for our primary outcome all-cause mortality within 30 days of surgery due to the large number of studies with zero events, or because the outcome was not reported. In the NMA for deep vein thrombosis (DVT), we included 19 studies (2395 participants). Most studies examined TXA (27 arms, 64%). No studies assessed desmopressin, EACA or topical fibrin. We found that TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively ranked the highest, with an anticipated absolute effect of 67 fewer DVTs per 1000 people (67 fewer to 34 more) (26% chance of ranking first) within the NMA (RR 0.16, 95% CrI 0.02 to 1.43; low-certainty evidence). This was followed by TXA given intravenously and intra-articularly at a total dose of 2 g pre-incision and intraoperatively (RR 0.21, 95% CrI 0.00 to 9.12; low-certainty evidence) and TXA given intravenously and intra-articularly, total dose greater than 3 g pre-incision, intraoperatively and postoperatively (RR 0.13, 95% CrI 0.01 to 3.11; low-certainty evidence). Aprotinin was not shown to be as effective compared with TXA (RR 0.67, 95% CrI 0.28 to 1.62; very low-certainty evidence). We were unable to perform an NMA for our secondary outcomes pulmonary embolism, myocardial infarction and CVA (stroke) within 30 days, mean number of transfusion episodes per person (up to 30 days), re-operation due to bleeding (within seven days), or length of hospital stay, due to the large number of studies with zero events, or because the outcome was not reported by enough studies to build a network. There are 30 ongoing trials planning to recruit 3776 participants, the majority examining TXA (26 trials).

AUTHORS' CONCLUSIONS:

We found that of all the interventions studied, TXA is probably the most effective intervention for preventing bleeding in people undergoing hip or knee replacement surgery. Aprotinin and EACA may not be as effective as TXA at preventing the need for allogeneic blood transfusion. We were not able to draw strong conclusions on the optimal dose, route and timing of administration of TXA. We found that TXA given at higher doses tended to rank higher in the treatment hierarchy, and we also found that it may be more beneficial to use a mixed route of administration (oral and intra-articular, oral and intravenous, or intravenous and intra-articular). Oral administration may be as effective as intravenous administration of TXA. We found little to no evidence of harm associated with higher doses of tranexamic acid in the risk of DVT. However, we are not able to definitively draw these conclusions based on the trials included within this review.

Editor's Choice
  • Roy NB
  • Carpenter A
  • Dale-Harris I
  • Dorée C
  • Estcourt LJ
  • et al.
Cochrane Database Syst Rev. 2023 Aug 4;8(8):CD012380 doi: 10.1002/14651858.CD012380.pub3.
POPULATION:

Children and adults with sickle cell disease (3 randomised controlled trials, n= 385).

INTERVENTION:

Interventions to prevent or reduce kidney complications or chronic kidney disease, including: hydroxyurea, and angiotensin-converting enzyme inhibitors (ACEIs), either alone or in combination.

COMPARISON:

Placebo.

OUTCOME:

This systematic review is an update of a review first published in 2017. The authors rated the certainty of the evidence as low to very low across different outcomes. The authors are unsure if hydroxyurea improves glomerular filtration rate or reduces hyperfiltration in children aged nine to 18 months, but it may improve their ability to concentrate urine and may make little or no difference to the incidence of acute chest syndrome, painful crises, and hospitalisations. The authors are unsure if ACEI compared to placebo has any effect on preventing or reducing kidney complications in adults with normal blood pressure and microalbuminuria. The authors are unsure if ACEI compared to vitamin C has any effect on preventing or reducing kidney complications in children with normal blood pressure and microalbuminuria.

BACKGROUND:

Sickle cell disease (SCD), one of the commonest severe monogenic disorders, is caused by the inheritance of two abnormal haemoglobin (beta-globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Kidney disease is a frequent and potentially severe complication in people with SCD. Chronic kidney disease (CKD) is defined as abnormalities of kidney structure or function present for more than three months. Sickle cell nephropathy refers to the spectrum of kidney complications in SCD. Glomerular damage is a cause of microalbuminuria and can develop at an early age in children with SCD, with increased prevalence in adulthood. In people with sickle cell nephropathy, outcomes are poor as a result of the progression to proteinuria and chronic kidney insufficiency. Up to 12% of people who develop sickle cell nephropathy will develop end-stage renal disease. This is an update of a review first published in 2017.

OBJECTIVES:

To assess the effectiveness of any intervention for preventing or reducing kidney complications or chronic kidney disease in people with sickle cell disease. Possible interventions include red blood cell transfusions, hydroxyurea, and angiotensin-converting enzyme inhibitors (ACEIs), either alone or in combination.

SEARCH METHODS:

We searched for relevant trials in the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register, CENTRAL, MEDLINE, Embase, seven other databases, and two other trials registers.

SELECTION CRITERIA:

Randomised controlled trials (RCTs) comparing interventions to prevent or reduce kidney complications or CKD in people with SCD. We applied no restrictions related to outcomes examined, language, or publication status.

DATA COLLECTION AND ANALYSIS:

Two review authors independently assessed trial eligibility, extracted data, assessed the risk of bias, and assessed the certainty of the evidence (GRADE).

MAIN RESULTS:

We included three RCTs with 385 participants. We rated the certainty of the evidence as low to very low across different outcomes according to GRADE methodology, downgrading for risk of bias concerns, indirectness, and imprecision. Hydroxyurea versus placebo One RCT published in 2011 compared hydroxyurea to placebo in 193 children aged nine to 18 months. We are unsure if hydroxyurea compared to placebo reduces or prevents progression of kidney disease assessed by change in glomerular filtration rate (mean difference (MD) 0.58 mL/min /1.73 m2, 95% confidence interval (CI) -14.60 to 15.76; 142 participants; very low certainty). Hydroxyurea compared to placebo may improve the ability to concentrate urine (MD 42.23 mOsm/kg, 95% CI 12.14 to 72.32; 178 participants; low certainty), and may make little or no difference to SCD-related serious adverse events, including acute chest syndrome (risk ratio (RR) 0.39, 99% CI 0.13 to 1.16; 193 participants; low certainty), painful crisis (RR 0.68, 99% CI 0.45 to 1.02; 193 participants; low certainty); and hospitalisations (RR 0.83, 99% CI 0.68 to 1.01; 193 participants; low certainty). No deaths occurred in either trial arm and the RCT did not report quality of life. Angiotensin-converting enzyme inhibitors versus placebo One RCT published in 1998 compared an ACEI (captopril) to placebo in 22 adults with normal blood pressure and microalbuminuria. We are unsure if captopril compared to placebo reduces proteinuria (MD -49.00 mg/day, 95% CI -124.10 to 26.10; 22 participants; very low certainty). We are unsure if captopril reduces or prevents kidney disease as measured by creatinine clearance; the trial authors stated that creatinine clearance remained constant over six months in both groups, but provided no comparative data (very low certainty). The RCT did not report serious adverse events, all-cause mortality, or quality of life. Angiotensin-converting enzyme inhibitors versus vitamin C One RCT published in 2020 compared an ACEI (lisinopril) with vitamin C in 170 children aged one to 18 years with normal blood pressure and microalbuminuria. It reported no data we could analyse. We are unsure if lisinopril compared to vitamin C reduces proteinuria in this population: the large drop in microalbuminuria in both arms of the trial after only one month on treatment may have been due to an overestimation of microalbuminuria at baseline rather than a true effect. The RCT did not report serious adverse events, all-cause mortality, or quality of life.

AUTHORS' CONCLUSIONS:

We are unsure if hydroxyurea improves glomerular filtration rate or reduces hyperfiltration in children aged nine to 18 months, but it may improve their ability to concentrate urine and may make little or no difference to the incidence of acute chest syndrome, painful crises, and hospitalisations. We are unsure if ACEI compared to placebo has any effect on preventing or reducing kidney complications in adults with normal blood pressure and microalbuminuria. We are unsure if ACEI compared to vitamin C has any effect on preventing or reducing kidney complications in children with normal blood pressure and microalbuminuria. No RCTs assessed red blood cell transfusions or any combined interventions to prevent or reduce kidney complications. Due to lack of evidence, we cannot comment on the management of children aged over 18 months or adults with any known genotype of SCD. We have identified a lack of adequately designed and powered studies, although we found four ongoing trials since the last version of this review. Only one ongoing trial addresses renal function as a primary outcome in the short term, but such interventions have long-term effects. Trials of hydroxyurea, ACEIs or red blood cell transfusion in older children and adults are urgently needed to determine any effect on prevention or reduction of kidney complications in people with SCD.

Editor's Choice
  • Lewis SR
  • Pritchard MW
  • Estcourt LJ
  • Stanworth SJ
  • Griffin XL
  • et al.
Cochrane Database Syst Rev. 2023 Jun 8;6(6):CD013737 doi: 10.1002/14651858.CD013737.pub2.
POPULATION:

Adults undergoing hip fracture surgery (26 systematic reviews, n= 3,923).

INTERVENTION:

Pharmacological and non-pharmacological interventions to prevent or minimise blood loss, treat the effects of anaemia, and reduce the need for allogenic blood transfusions (ABT).

COMPARISON:

Between and within categories of intervention, standard of care or placebo.

OUTCOME:

17 reviews were found about tranexamic acid, 9 reviews about iron, and none for any other types of treatment. The three reviews providing the most relevant information were: A review about tranexamic acid including 24 studies with 2,148 people with a broken hip; a review about tranexamic acid including 10 studies with 1,123 people; and a review about iron including 2 studies with 403 people. The authors concluded that tranexamic acid probably reduces the need for ABT in adults undergoing hip fracture surgery, and there is probably little or no difference in adverse events. For iron, there may be little or no difference in overall clinical effects, but this finding is limited by evidence from only a few small studies. Reviews of these treatments did not adequately include patient-reported outcome measures, and evidence for their effectiveness remains incomplete.

BACKGROUND:

Following hip fracture, people sustain an acute blood loss caused by the injury and subsequent surgery. Because the majority of hip fractures occur in older adults, blood loss may be compounded by pre-existing anaemia. Allogenic blood transfusions (ABT) may be given before, during, and after surgery to correct chronic anaemia or acute blood loss. However, there is uncertainty about the benefit-risk ratio for ABT. This is a potentially scarce resource, with availability of blood products sometimes uncertain. Other strategies from Patient Blood Management may prevent or minimise blood loss and avoid administration of ABT.

OBJECTIVES:

To summarise the evidence from Cochrane Reviews and other systematic reviews of randomised or quasi-randomised trials evaluating the effects of pharmacological and non-pharmacological interventions, administered perioperatively, on reducing blood loss, anaemia, and the need for ABT in adults undergoing hip fracture surgery.

METHODS:

In January 2022, we searched the Cochrane Library, MEDLINE, Embase, and five other databases for systematic reviews of randomised controlled trials (RCTs) of interventions given to prevent or minimise blood loss, treat the effects of anaemia, and reduce the need for ABT, in adults undergoing hip fracture surgery. We searched for pharmacological interventions (fibrinogen, factor VIIa and factor XIII, desmopressin, antifibrinolytics, fibrin and non-fibrin sealants and glue, agents to reverse the effects of anticoagulants, erythropoiesis agents, iron, vitamin B12, and folate replacement therapy) and non-pharmacological interventions (surgical approaches to reduce or manage blood loss, intraoperative cell salvage and autologous blood transfusion, temperature management, and oxygen therapy). We used Cochrane methodology, and assessed the methodological quality of included reviews using AMSTAR 2. We assessed the degree of overlap of RCTs between reviews. Because overlap was very high, we used a hierarchical approach to select reviews from which to report data; we compared the findings of selected reviews with findings from the other reviews. Outcomes were: number of people requiring ABT, volume of transfused blood (measured as units of packed red blood cells (PRC)), postoperative delirium, adverse events, activities of daily living (ADL), health-related quality of life (HRQoL), and mortality.

MAIN RESULTS:

We found 26 systematic reviews including 36 RCTs (3923 participants), which only evaluated tranexamic acid and iron. We found no reviews of other pharmacological interventions or any non-pharmacological interventions. Tranexamic acid (17 reviews, 29 eligible RCTs) We selected reviews with the most recent search date, and which included data for the most outcomes. The methodological quality of these reviews was low. However, the findings were largely consistent across reviews. One review included 24 RCTs, with participants who had internal fixation or arthroplasty for different types of hip fracture. Tranexamic acid was given intravenously or topically during the perioperative period. In this review, based on a control group risk of 451 people per 1000, 194 fewer people per 1000 probably require ABT after receiving tranexamic acid (risk ratio (RR) 0.56, 95% confidence interval (CI) 0.46 to 0.68; 21 studies, 2148 participants; moderate-certainty evidence). We downgraded the certainty for possible publication bias. Review authors found that there was probably little or no difference in the risks of adverse events, reported as deep vein thrombosis (RR 1.16, 95% CI 0.74 to 1.81; 22 studies), pulmonary embolism (RR 1.01, 95% CI 0.36 to 2.86; 9 studies), myocardial infarction (RR 1.00, 95% CI 0.23 to 4.33; 8 studies), cerebrovascular accident (RR 1.45, 95% CI 0.56 to 3.70; 8 studies), or death (RR 1.01, 95% CI 0.70 to 1.46; 10 studies). We judged evidence from these outcomes to be moderate certainty, downgraded for imprecision. Another review, with a similarly broad inclusion criteria, included 10 studies, and found that tranexamic acid probably reduces the volume of transfused PRC (0.53 fewer units, 95% CI 0.27 to 0.80; 7 studies, 813 participants; moderate-certainty evidence). We downgraded the certainty because of unexplained high levels of statistical heterogeneity. No reviews reported outcomes of postoperative delirium, ADL, or HRQoL. Iron (9 reviews, 7 eligible RCTs) Whilst all reviews included studies in hip fracture populations, most also included other surgical populations. The most current, direct evidence was reported in two RCTs, with 403 participants with hip fracture; iron was given intravenously, starting preoperatively. This review did not include evidence for iron with erythropoietin. The methodological quality of this review was low. In this review, there was low-certainty evidence from two studies (403 participants) that there may be little or no difference according to whether intravenous iron was given in: the number of people who required ABT (RR 0.90, 95% CI 0.73 to 1.11), the volume of transfused blood (MD -0.07 units of PRC, 95% CI -0.31 to 0.17), infection (RR 0.99, 95% CI 0.55 to 1.80), or mortality within 30 days (RR 1.06, 95% CI 0.53 to 2.13). There may be little or no difference in delirium (25 events in the iron group compared to 26 events in control group; 1 study, 303 participants; low-certainty evidence). We are very unsure whether there was any difference in HRQoL, since it was reported without an effect estimate. The findings were largely consistent across reviews. We downgraded the evidence for imprecision, because studies included few participants, and the wide CIs indicated possible benefit and harm. No reviews reported outcomes of cognitive dysfunction, ADL, or HRQoL.

AUTHORS' CONCLUSIONS:

Tranexamic acid probably reduces the need for ABT in adults undergoing hip fracture surgery, and there is probably little or no difference in adverse events. For iron, there may be little or no difference in overall clinical effects, but this finding is limited by evidence from only a few small studies. Reviews of these treatments did not adequately include patient-reported outcome measures (PROMS), and evidence for their effectiveness remains incomplete. We were unable to effectively explore the impact of timing and route of administration between reviews. A lack of systematic reviews for other types of pharmacological or any non-pharmacological interventions to reduce the need for ABT indicates a need for further evidence syntheses to explore this. Methodologically sound evidence syntheses should include PROMS within four months of surgery.

Editor's Choice
  • Gibbs VN
  • Geneen LJ
  • Champaneria R
  • Raval P
  • Dorée C
  • et al.
Cochrane Database Syst Rev. 2023 Jun 5;6(6):CD013499 doi: 10.1002/14651858.CD013499.pub2.
POPULATION:

People undergoing definitive fixation or joint replacement for hip, pelvic and long bone fractures (13 randomised controlled trials (RCTs), n= 929).

INTERVENTION:

Intravenous tranexamic acid (TXA); topical tranexamic acid; recombinant factor VIIa.

COMPARISON:

Placebo.

OUTCOME:

The primary outcomes were risk of receiving allogeneic blood transfusions during or after surgery and all‐cause mortality. Intravenous tranexamic acid vs. placebo, 9 RCTs, 765 participants: Intravenous tranexamic acid may reduce the risk of requiring an allogeneic blood transfusion up to 30 days (low‐certainty evidence) and may result in little to no difference in all‐cause mortality (low certainty evidence). Topical tranexamic acid vs. placebo, 3 RCTs, 116 participants: There was inconclusive evidence (very low certainty evidence) whether there is a difference for risk of requiring an allogeneic blood transfusion and all‐cause mortality. Recombinant factor VIIa vs. placebo, 1 RCT, 48 participants: There was inconclusive evidence (very low certainty evidence) whether there is a difference for risk of requiring an allogeneic blood transfusion. There was no data for all-cause mortality.

BACKGROUND:

Pelvic, hip, and long bone fractures can result in significant bleeding at the time of injury, with further blood loss if they are treated with surgical fixation. People undergoing surgery are therefore at risk of requiring a blood transfusion and may be at risk of peri-operative anaemia. Pharmacological interventions for blood conservation may reduce the risk of requiring an allogeneic blood transfusion and associated complications.

OBJECTIVES:

To assess the effectiveness of different pharmacological interventions for reducing blood loss in definitive surgical fixation of the hip, pelvic, and long bones.

SEARCH METHODS:

We used a predefined search strategy to search CENTRAL, MEDLINE, PubMed, Embase, CINAHL, Transfusion Evidence Library, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform (ICTRP) from inception to 7 April 2022, without restrictions on language, year, or publication status. We handsearched reference lists of included trials to identify further relevant trials. We contacted authors of ongoing trials to acquire any unpublished data.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) of people who underwent trauma (non-elective) surgery for definitive fixation of hip, pelvic, and long bone (pelvis, tibia, femur, humerus, radius, ulna and clavicle) fractures only. There were no restrictions on gender, ethnicity, or age. We excluded planned (elective) procedures (e.g. scheduled total hip arthroplasty), and studies published since 2010 that had not been prospectively registered. Eligible interventions included: antifibrinolytics (tranexamic acid, aprotinin, epsilon-aminocaproic acid), desmopressin, factor VIIa and XIII, fibrinogen, fibrin sealants, and non-fibrin sealants.

DATA COLLECTION AND ANALYSIS:

Two review authors independently assessed trial eligibility and risk of bias, and extracted data. We assessed the certainty of the evidence using GRADE. We did not perform a network meta-analysis due to lack of data.

MAIN RESULTS:

We included 13 RCTs (929 participants), published between 2005 and 2021. Three trials did not report any of our predefined outcomes and so were not included in quantitative analyses (all were tranexamic acid versus placebo). We identified three comparisons of interest: intravenous tranexamic acid versus placebo; topical tranexamic acid versus placebo; and recombinant factor VIIa versus placebo. We rated the certainty of evidence as very low to low across all outcomes. Comparison 1. Intravenous tranexamic acid versus placebo Intravenous tranexamic acid compared to placebo may reduce the risk of requiring an allogeneic blood transfusion up to 30 days (RR 0.48, 95% CI 0.34 to 0.69; 6 RCTs, 457 participants; low-certainty evidence) and may result in little to no difference in all-cause mortality (Peto odds ratio (Peto OR) 0.38, 95% CI 0.05 to 2.77; 2 RCTs, 147 participants; low-certainty evidence).  It may result in little to no difference in risk of participants experiencing myocardial infarction (risk difference (RD) 0.00, 95% CI -0.03 to 0.03; 2 RCTs, 199 participants; low-certainty evidence), and cerebrovascular accident/stroke (RD 0.00, 95% CI -0.02 to 0.02; 3 RCTs, 324 participants; low-certainty evidence).  We are uncertain if there is a difference between groups for risk of deep vein thrombosis (Peto OR 2.15, 95% CI 0.22 to 21.35; 4 RCTs, 329 participants, very low-certainty evidence), pulmonary embolism (Peto OR 1.08, 95% CI 0.07 to 17.66; 4 RCTs, 329 participants; very low-certainty evidence), and suspected serious drug reactions (RD 0.00, 95% CI -0.03 to 0.03; 2 RCTs, 185 participants; very low-certainty evidence). No data were available for number of red blood cell units transfused, reoperation, or acute transfusion reaction. We downgraded the certainty of the evidence for imprecision (wide confidence intervals around the estimate and small sample size, particularly for rare events), and risk of bias (unclear or high risk methods of blinding and allocation concealment in the assessment of subjective measures), and upgraded the evidence for transfusion requirement for a large effect.  Comparison 2. Topical tranexamic acid versus placebo We are uncertain if there is a difference between topical tranexamic acid and placebo for risk of requiring an allogeneic blood transfusion (RR 0.31, 95% CI 0.08 to 1.22; 2 RCTs, 101 participants), all-cause mortality (RD 0.00, 95% CI -0.10 to 0.10; 1 RCT, 36 participants), risk of participants experiencing myocardial infarction (Peto OR 0.15, 95% CI 0.00 to 7.62; 1 RCT, 36 participants), cerebrovascular accident/stroke (RD 0.00, 95% CI -0.06 to 0.06; 1 RCT, 65 participants); and deep vein thrombosis (Peto OR 1.11, 95% CI 0.07 to 17.77; 2 RCTs, 101 participants).  All outcomes reported were very low-certainty evidence. No data were available for number of red blood cell units transfused, reoperation, incidence of pulmonary embolism, acute transfusion reaction, or suspected serious drug reactions. We downgraded the certainty of the evidence for imprecision (wide confidence intervals around the estimate and small sample size, particularly for rare events), inconsistency (moderate heterogeneity), and risk of bias (unclear or high risk methods of blinding and allocation concealment in the assessment of subjective measures, and high risk of attrition and reporting biases in one trial). Comparison 3. Recombinant factor VIIa versus placebo   Only one RCT of 48 participants reported data for recombinant factor VIIa versus placebo, so we have not presented the results here.

AUTHORS' CONCLUSIONS:

We cannot draw conclusions from the current evidence due to lack of data. Most published studies included in our analyses assessed the use of tranexamic acid (compared to placebo, or using different routes of administration).  We identified 27 prospectively registered ongoing RCTs (total target recruitment of 4177 participants by end of 2023). The ongoing trials create six new comparisons: tranexamic acid (tablet + injection) versus placebo; intravenous tranexamic acid versus oral tranexamic acid; topical tranexamic acid versus oral tranexamic acid; different intravenous tranexamic acid dosing regimes; topical tranexamic acid versus topical fibrin glue; and fibrinogen (injection) versus placebo.

Editor's Choice
  • Iannizzi C
  • Chai KL
  • Piechotta V
  • Valk SJ
  • Kimber C
  • et al.
Cochrane Database Syst Rev. 2023 May 10;5(5):CD013600 doi: 10.1002/14651858.CD013600.pub6.
POPULATION:

People of any age with COVID-19 (33 randomised controlled trials (RCTs) n= 24,861).

INTERVENTION:

Convalescent plasma (n= 11,432).

COMPARISON:

Standard plasma, human immunoglobulin, placebo or standard care alone.

OUTCOME:

This living systematic review fourth review update version included 33 RCTs, of these 9 were single‐centre studies and 24 were multi‐centre studies. The authors identified 49 ongoing studies. Individuals with a confirmed diagnosis of COVID‐19 and moderate to severe disease: 23 RCTs compared convalescent plasma to placebo or standard care alone; 5 RCTs compared convalescent plasma to standard plasma, and 1 RCT compared convalescent plasma to human immunoglobulin. Individuals with a confirmed diagnosis of SARS‐CoV‐2 infection and mild disease: 2 RCTs compared convalescent plasma to placebo or standard care alone, and 2 RCTs compared convalescent plasma to standard plasma. When comparing convalescent plasma vs. placebo or standard care alone, authors’ certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. For individuals with mild disease, the authors have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death.

BACKGROUND:

Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required.

OBJECTIVES:

To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach.

SEARCH METHODS:

To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events.

MAIN RESULTS:

In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence.

AUTHORS' CONCLUSIONS:

For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.

  • Geneen LJ
  • Dorée C
  • Estcourt LJ
  • Geneen, L. J.
  • Dorée, C.
  • et al.
Cochrane Database Syst Rev. 2023 Mar 6;3(3):CD012349 doi: 10.1002/14651858.CD012349.pub3.
BACKGROUND:

Regularly transfused people with sickle cell disease (SCD) and people with thalassaemia are at risk of iron overload. Iron overload can lead to iron toxicity in vulnerable organs such as the heart, liver and endocrine glands, which can be prevented and treated with iron-chelating agents. The intensive demands and uncomfortable side effects of therapy can have a negative impact on daily activities and wellbeing, which may affect adherence.

OBJECTIVES:

To identify and assess the effectiveness of different types of interventions (psychological and psychosocial, educational, medication interventions, or multi-component interventions) and interventions specific to different age groups, to improve adherence to iron chelation therapy compared to another listed intervention, or standard care in people with SCD or thalassaemia.

SEARCH METHODS:

We searched CENTRAL (Cochrane Library), MEDLINE, PubMed, Embase, CINAHL, PsycINFO, ProQuest Dissertations & Global Theses, Web of Science & Social Sciences Conference Proceedings Indexes and ongoing trial databases (13 December 2021). We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register (1 August 2022).

SELECTION CRITERIA:

For trials comparing medications or medication changes, only randomised controlled trials (RCTs) were eligible for inclusion. For studies including psychological and psychosocial interventions, educational interventions, or multi-component interventions, non-randomised studies of interventions (NRSIs), controlled before-after studies, and interrupted time series studies with adherence as a primary outcome were also eligible for inclusion.

DATA COLLECTION AND ANALYSIS:

For this update, two authors independently assessed trial eligibility and risk of bias, and extracted data. We assessed the certainty of the evidence using GRADE.

MAIN RESULTS:

We included 19 RCTs and one NRSI published between 1997 and 2021. One trial assessed medication management, one assessed an education intervention (NRSI) and 18 RCTs were of medication interventions. Medications assessed were subcutaneous deferoxamine, and two oral chelating agents, deferiprone and deferasirox. We rated the certainty of evidence as very low to low across all outcomes identified in this review. Four trials measured quality of life (QoL) with validated instruments, but provided no analysable data and reported no difference in QoL. We identified nine comparisons of interest. 1. Deferiprone versus deferoxamine We are uncertain whether or not deferiprone affects adherence to iron chelation therapy (four RCTs, unpooled, very low-certainty evidence), all-cause mortality (risk ratio (RR) 0.47, 95% confidence interval (CI) 0.18 to 1.21; 3 RCTs, 376 participants; very low-certainty evidence), or serious adverse events (SAEs) (RR 1.43, 95% CI 0.83 to 2.46; 1 RCT, 228 participants; very low-certainty evidence).  Adherence was reported as "good", "high" or "excellent" by all seven trials, though the data could not be analysed formally: adherence ranged from 69% to 95% (deferiprone, mean 86.6%), and 71% to 93% (deferoxamine, mean 78.8%), based on five trials (474 participants) only. 2. Deferasirox versus deferoxamine We are uncertain whether or not deferasirox affects adherence to iron chelation therapy (three RCTs, unpooled, very low-certainty evidence), although medication adherence was high in all trials. We are uncertain whether or not there is any difference between the drug therapies in serious adverse events (SAEs) (SCD or thalassaemia) or all-cause mortality (thalassaemia). 3. Deferiprone versus deferasirox We are uncertain if there is a difference between oral deferiprone and deferasirox based on a single trial in children (average age 9 to 10 years) with any hereditary haemoglobinopathy in adherence, SAEs and all-cause mortality. 4. Deferasirox film-coated tablet (FCT) versus deferasirox dispersible tablet (DT) One RCT compared deferasirox in different tablet forms. There may be a preference for FCTs, shown through a trend for greater adherence (RR 1.10, 95% CI 0.99 to 1.22; 1 RCT, 88 participants), although medication adherence was high in both groups (FCT 92.9%; DT 85.3%). We are uncertain if there is a benefit in chelation-related AEs with FCTs. We are uncertain if there is a difference in the incidence of SAEs, all-cause mortality or sustained adherence. 5. Deferiprone and deferoxamine combined versus deferiprone alone We are uncertain if there is a difference in adherence, though reporting was usually narrative as triallists report it was "excellent" in both groups (three RCTs, unpooled). We are uncertain if there is a difference in the incidence of SAEs and all-cause mortality.  6. Deferiprone and deferoxamine combined versus deferoxamine alone We are uncertain if there is a difference in adherence (four RCTs), SAEs (none reported in the trial period) and all-cause mortality (no deaths reported in the trial period). There was high adherence in all trials. 7. Deferiprone and deferoxamine combined versus deferiprone and deferasirox combined There may be a difference in favour of deferiprone and deferasirox (combined) in rates of adherence (RR 0.84, 95% CI 0.72 to 0.99) (one RCT), although it was high (> 80%) in both groups. We are uncertain if there is a difference in SAEs, and no deaths were reported in the trial, so we cannot draw conclusions based on these data (one RCT). 8. Medication management versus standard care We are uncertain if there is a difference in QoL (one RCT), and we could not assess adherence due to a lack of reporting in the control group. 9. Education versus standard care One quasi-experimental (NRSI) study could not be analysed due to the severe baseline confounding.

AUTHORS' CONCLUSIONS:

The medication comparisons included in this review had higher than average adherence rates not accounted for by differences in medication administration or side effects, though often follow-up was not good (high dropout over longer trials), with adherence based on a per protocol analysis. Participants may have been selected based on higher adherence to trial medications at baseline. Also, within the clinical trial context, there is increased attention and involvement of clinicians, thus high adherence rates may be an artefact of trial participation. Real-world, pragmatic trials in community and clinic settings are needed that examine both confirmed or unconfirmed adherence strategies that may increase adherence to iron chelation therapy. Due to lack of evidence this review cannot comment on intervention strategies for different age groups.

Editor's Choice
  • Beverly A
  • Ong G
  • Kimber C
  • Sandercock J
  • Dorée C
  • et al.
Cochrane Database Syst Rev. 2023 Feb 17;2(2):CD013649 doi: 10.1002/14651858.CD013649.pub2.
POPULATION:

Adults undergoing major vascular surgery or vascular procedures with a risk of moderate or severe blood loss (22 randomised controlled trials, n= 3,393).

INTERVENTION:

Drug treatments to reduce bleeding: anti-fibrinolytic and haemostatic drugs and agents.

COMPARISON:

Placebo, usual care or another drug regimen.

OUTCOME:

The primary outcomes were units of red blood cells transfused, all-cause mortality and thromboembolic events. There was too little data for a network meta-analysis. The reporting of outcomes was sparse. There was no evidence of increased risk of thromboembolic events with tranexamic acid [low certainty evidence]. The authors reported a need for larger trials with better reporting of post-surgical outcomes.

BACKGROUND:

Vascular surgery may be followed by internal bleeding due to inadequate surgical haemostasis, abnormal clotting, or surgical complications. Bleeding ranges from minor, with no transfusion requirement, to massive, requiring multiple blood product transfusions. There are a number of drugs, given systemically or applied locally, which may reduce the need for blood transfusion.

OBJECTIVES:

To assess the effectiveness and safety of anti-fibrinolytic and haemostatic drugs and agents in reducing bleeding and the need for blood transfusion in people undergoing major vascular surgery or vascular procedures with a risk of moderate or severe (> 500 mL) blood loss.

SEARCH METHODS:

We searched: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL, and Transfusion Evidence Library. We also searched the WHO ICTRP and ClinicalTrials.gov trial registries for ongoing and unpublished trials. Searches used a combination of MeSH and free text terms from database inception to 31 March 2022, without restriction on language or publication status.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) in adults of drug treatments to reduce bleeding due to major vascular surgery or vascular procedures with a risk of moderate or severe blood loss, which used placebo, usual care or another drug regimen as control.

DATA COLLECTION AND ANALYSIS:

We used standard Cochrane methods. Our primary outcomes were units of red cells transfused and all-cause mortality. Our secondary outcomes included risk of receiving an allogeneic blood product, risk of reoperation or repeat procedure due to bleeding, risk of a thromboembolic event, risk of a serious adverse event and length of hospital stay. We used GRADE to assess certainty of evidence.

MAIN RESULTS:

We included 22 RCTs with 3393 participants analysed, of which one RCT with 69 participants was reported only in abstract form, with no usable data. Seven RCTs evaluated systemic drug treatments (three aprotinin, two desmopressin, two tranexamic acid) and 15 RCTs evaluated topical drug treatments (drug-containing bioabsorbable dressings or glues), including fibrin, thrombin, collagen, gelatin, synthetic sealants and one investigational new agent. Most trials were conducted in high-income countries and the majority of the trials only included participants undergoing elective surgery. We also identified two ongoing RCTs. We were unable to perform the planned network meta-analysis due to the sparse reporting of outcomes relevant to this review. Systemic drug treatments We identified seven trials of three systemic drugs: aprotinin, desmopressin and tranexamic acid, all with placebo controls. The trials of aprotinin and desmopressin were small with very low-certainty evidence for all of our outcomes. Tranexamic acid versus placebo was the systemic drug comparison with the largest number of participants (2 trials; 1460 participants), both at low risk of bias. The largest of these included a total of 9535 individuals undergoing a number of different higher risk surgeries and reported limited information on the vascular subgroup (1399 participants). Neither trial reported the number of units of red cells transfused per participant up to 30 days. Three outcomes were associated with very low-certainty evidence due to the very wide confidence intervals (CIs) resulting from small study sizes and low number of events. These were: all-cause mortality up to 30 days; number of participants requiring an allogeneic blood transfusion up to 30 days; and risk of requiring a repeat procedure or operation due to bleeding. Tranexamic acid may have no effect on the risk of thromboembolic events up to 30 days (risk ratio (RR) 1.10, 95% CI 0.88 to 1.36; 1 trial, 1360 participants; low-certainty evidence due to imprecision). There is one large ongoing trial (8320 participants) comparing tranexamic acid versus placebo in people undergoing non-cardiac surgery who are at high risk of requiring a red cell transfusion. This aims to complete recruitment in April 2023. This trial has primary outcomes of proportion of participants transfused with red blood cells and incidence of venous thromboembolism (DVT or PE). Topical drug treatments Most trials of topical drug treatments were at high risk of bias due to their open-label design (compared with usual care, or liquids were compared with sponges). All of the trials were small, most were very small, and few reported clinically relevant outcomes in the postoperative period. Fibrin sealant versus usual care was the topical drug comparison with the largest number of participants (5 trials, 784 participants). The five trials that compared fibrin sealant with usual care were all at high risk of bias, due to the open-label trial design with no measures put in place to minimise reporting bias. All of the trials were funded by pharmaceutical companies. None of the five trials reported the number of red cells transfused per participant up to 30 days or the number of participants requiring an allogeneic blood transfusion up to 30 days. The other three outcomes were associated with very low-certainty evidence with wide confidence intervals due to small sample sizes and the low number of events, these were: all-cause mortality up to 30 days; risk of requiring a repeat procedure due to bleeding; and risk of thromboembolic disease up to 30 days. We identified one large trial (500 participants) comparing fibrin sealant versus usual care in participants undergoing abdominal aortic aneurysm repair, which has not yet started recruitment. This trial lists death due to arterial disease and reintervention rates as primary outcomes.

AUTHORS' CONCLUSIONS:

Because of a lack of data, we are uncertain whether any systemic or topical treatments used to reduce bleeding due to major vascular surgery have an effect on: all-cause mortality up to 30 days; risk of requiring a repeat procedure or operation due to bleeding; number of red cells transfused per participant up to 30 days or the number of participants requiring an allogeneic blood transfusion up to 30 days. There may be no effect of tranexamic acid on the risk of thromboembolic events up to 30 days, this is important as there has been concern that this risk may be increased. Trials with sample size targets of thousands of participants and clinically relevant outcomes are needed, and we look forward to seeing the results of the ongoing trials in the future.

Editor's Choice
  • Iannizzi C
  • Chai KL
  • Piechotta V
  • Valk SJ
  • Kimber C
  • et al.
Cochrane Database Syst Rev. 2023 Feb 1;2(2):CD013600 doi: 10.1002/14651858.CD013600.pub5.
POPULATION:

People of any age with mild, moderate or severe COVID-19 (33 randomised controlled trials, n= 24,861).

INTERVENTION:

Convalescent plasma (n= 11,432).

COMPARISON:

Standard plasma, human immunoglobulin, placebo or standard care alone.

OUTCOME:

This living systematic review was a fourth review update version and included 33 studies. The authors identified 49 ongoing studies. For the comparison of convalescent plasma versus placebo or standard care alone, the authors’ certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. For individuals with mild disease, the authors have low certainty evidence for the primary outcomes.

BACKGROUND:

Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required.

OBJECTIVES:

To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach.

SEARCH METHODS:

To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events.

MAIN RESULTS:

In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence.

AUTHORS' CONCLUSIONS:

For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have low certainty evidence for our primary outcomes. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.

  • Kimber C
  • Valk SJ
  • Chai KL
  • Piechotta V
  • Iannizzi C
  • et al.
Cochrane Database Syst Rev. 2023 Jan 26;1(1):CD015167 doi: 10.1002/14651858.CD015167.pub2.
BACKGROUND:

Hyperimmune immunoglobulin (hIVIG) contains polyclonal antibodies, which can be prepared from large amounts of pooled convalescent plasma or prepared from animal sources through immunisation. They are being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). This review was previously part of a parent review addressing convalescent plasma and hIVIG for people with COVID-19 and was split to address hIVIG and convalescent plasma separately.

OBJECTIVES:

To assess the benefits and harms of hIVIG therapy for the treatment of people with COVID-19, and to maintain the currency of the evidence using a living systematic review approach.

SEARCH METHODS:

To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Research Database, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform and Medline and Embase from 1 January 2019 onwards. We carried out searches on 31 March 2022.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) that evaluated hIVIG for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies that evaluated standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies, we used RoB 2. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), quality of life, adverse events, and serious adverse events.

MAIN RESULTS:

We included five RCTs with 947 participants, of whom 688 received hIVIG prepared from humans, 18 received heterologous swine glyco-humanised polyclonal antibody, and 241 received equine-derived processed and purified F(ab')2 fragments. All participants were hospitalised with moderate-to-severe disease, most participants were not vaccinated (only 12 participants were vaccinated). The studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern. There are no data for people with COVID-19 with no symptoms (asymptomatic) or people with mild COVID-19. We identified a further 10 ongoing studies evaluating hIVIG. Benefits of hIVIG prepared from humans We included data on one RCT (579 participants) that assessed the benefits and harms of hIVIG 0.4 g/kg compared to saline placebo. hIVIG may have little to no impact on all-cause mortality at 28 days (risk ratio (RR) 0.79, 95% confidence interval (CI) 0.43 to 1.44; absolute effect 77 per 1000 with placebo versus 61 per 1000 (33 to 111) with hIVIG; low-certainty evidence). The evidence is very uncertain about the effect on worsening of clinical status at day 7 (RR 0.85, 95% CI 0.58 to 1.23; very low-certainty evidence). It probably has little to no impact on improvement of clinical status on day 28 (RR 1.02, 95% CI 0.97 to 1.08; moderate-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if hIVIG has any impact on quality of life. Harms of hIVIG prepared from humans hIVIG may have little to no impact on adverse events at any grade on day 1 (RR 0.98, 95% CI 0.81 to 1.18; 431 per 1000; 1 study 579 participants; low-certainty evidence). Patients receiving hIVIG probably experience more adverse events at grade 3-4 severity than patients who receive placebo (RR 4.09, 95% CI 1.39 to 12.01; moderate-certainty evidence). hIVIG may have little to no impact on the composite outcome of serious adverse events or death up to day 28 (RR 0.72, 95% CI 0.45 to 1.14; moderate-certainty evidence). We also identified additional results on the benefits and harms of other dose ranges of hIVIG, not included in the summary of findings table, but summarised in additional tables. Benefits of animal-derived polyclonal antibodies We included data on one RCT (241 participants) to assess the benefits and harms of receptor-binding domain-specific polyclonal F(ab´)2 fragments of equine antibodies (EpAbs) compared to saline placebo. EpAbs may reduce all-cause mortality at 28 days (RR 0.60, 95% CI 0.26 to 1.37; absolute effect 114 per 1000 with placebo versus 68 per 1000 (30 to 156) ; low-certainty evidence). EpAbs may reduce worsening of clinical status up to day 28 (RR 0.67, 95% CI 0.38 to 1.18; absolute effect 203 per 1000 with placebo versus 136 per 1000 (77 to 240); low-certainty evidence). It may have some effect on improvement of clinical status on day 28 (RR 1.06, 95% CI 0.96 to 1.17; low-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if EpAbs have any impact on quality of life. Harms of animal-derived polyclonal antibodies EpAbs may have little to no impact on the number of adverse events at any grade up to 28 days (RR 0.99, 95% CI 0.74 to 1.31; low-certainty evidence). Adverse events at grade 3-4 severity were not reported. Individuals receiving EpAbs may experience fewer serious adverse events than patients receiving placebo (RR 0.67, 95% CI 0.38 to 1.19; low-certainty evidence). We also identified additional results on the benefits and harms of other animal-derived polyclonal antibody doses, not included in the summary of findings table, but summarised in additional tables.

AUTHORS' CONCLUSIONS:

We included data from five RCTs that evaluated hIVIG compared to standard therapy, with participants with moderate-to-severe disease. As the studies evaluated different preparations (from humans or from various animals) and doses, we could not pool them. hIVIG prepared from humans may have little to no impact on mortality, and clinical improvement and worsening. hIVIG may increase grade 3-4 adverse events. Studies did not evaluate quality of life. RBD-specific polyclonal F(ab´)2 fragments of equine antibodies may reduce mortality and serious adverse events, and may reduce clinical worsening. However, the studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern and prior to widespread vaccine rollout. As no studies evaluated hIVIG for participants with asymptomatic infection or mild disease, benefits for these individuals remains uncertain. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence.

Editor's Choice
  • Piechotta V
  • Iannizzi C
  • Chai KL
  • Valk SJ
  • Kimber C
  • et al.
Cochrane Database Syst Rev. 2021 May 20;5(5):CD013600 doi: 10.1002/14651858.CD013600.pub4.
POPULATION:

Patients with COVID-19 (13 studies, n= 48,509).

INTERVENTION:

Convalescent plasma (n= 41,880) or hyperimmune immunoglobulin.

COMPARISON:

Standard plasma, placebo treatment or standard care alone,

OUTCOME:

Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 7 RCTs, 12,646 participants; high-certainty evidence). It has little to no impact on clinical improvement for all participants when assessed by liberation from respiratory support (RR not estimable, 8 RCTs, 12,682 participants; high-certainty evidence). It has little to no impact on the chance of being weaned or liberated from invasive mechanical ventilation for the subgroup of participants requiring invasive mechanical ventilation at baseline (RR 1.04, 2 RCTs, 630 participants; low-certainty evidence). It does not reduce the need for invasive mechanical ventilation (RR 0.98, 4 RCTs, 11,765 participants; high-certainty evidence). There was low-certainty evidence on whether convalescent plasma increases or reduces the risk of grade 3 and 4 adverse events (RR 0.90, 4 RCTs, 905 participants), and serious adverse events (RR 1.24, 2 RCTs, 414 participants). No completed studies were identified on quality of life, or hyperimmune immunoglobulin therapy.

BACKGROUND:

Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are being investigated as potential therapies for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of these interventions is required.  OBJECTIVES: Using a living systematic review approach, to assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19; and to maintain the currency of the evidence.

SEARCH METHODS:

To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform, and trial registries. Searches were done on 17 March 2021.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) evaluating convalescent plasma or hyperimmune immunoglobulin for COVID-19, irrespective of disease severity, age, gender or ethnicity. For safety assessments, we also included non-controlled non-randomised studies of interventions (NRSIs) if 500 or more participants were included. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of Bias 2' tool for RCTs, and for NRSIs, the assessment criteria for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), development of severe clinical COVID-19 symptoms (for individuals with asymptomatic or mild disease), quality of life (including fatigue and functional independence), grade 3 or 4 adverse events, and serious adverse events.

MAIN RESULTS:

We included 13 studies (12 RCTs, 1 NRSI) with 48,509 participants, of whom 41,880 received convalescent plasma. We did not identify any completed studies evaluating hyperimmune immunoglobulin. We identified a further 100 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, and 33 studies reporting as being completed or terminated. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease Eleven RCTs and one NRSI investigated the use of convalescent plasma for 48,349 participants with moderate to severe disease. Nine RCTs compared convalescent plasma to placebo treatment or standard care alone, and two compared convalescent plasma to standard plasma (results not included in abstract). Effectiveness of convalescent plasma We included data on nine RCTs (12,875 participants) to assess the effectiveness of convalescent plasma compared to placebo or standard care alone.  Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.05; 7 RCTs, 12,646 participants; high-certainty evidence). It has little to no impact on clinical improvement for all participants when assessed by liberation from respiratory support (RR not estimable; 8 RCTs, 12,682 participants; high-certainty evidence). It has little to no impact on the chance of being weaned or liberated from invasive mechanical ventilation for the subgroup of participants requiring invasive mechanical ventilation at baseline (RR 1.04, 95% CI 0.57 to 1.93; 2 RCTs, 630 participants; low-certainty evidence). It does not reduce the need for invasive mechanical ventilation (RR 0.98, 95% CI 0.89 to 1.08; 4 RCTs, 11,765 participants; high-certainty evidence). We did not identify any subgroup differences.  We did not identify any studies reporting quality of life, and therefore, do not know whether convalescent plasma has any impact on quality of life. One RCT assessed resolution of fatigue on day 7, but we are very uncertain about the effect (RR 1.21, 95% CI 1.02 to 1.42; 309 participants; very low-certainty evidence).  Safety of convalescent plasma We included results from eight RCTs, and one NRSI, to assess the safety of convalescent plasma. Some of the RCTs reported on safety data only for the convalescent plasma group.  We are uncertain whether convalescent plasma increases or reduces the risk of grade 3 and 4 adverse events (RR 0.90, 95% CI 0.58 to 1.41; 4 RCTs, 905 participants; low-certainty evidence), and serious adverse events (RR 1.24, 95% CI 0.81 to 1.90; 2 RCTs, 414 participants; low-certainty evidence).  A summary of reported events of the NRSI (reporting safety data for 20,000 of 35,322 transfused participants), and four RCTs reporting safety data only for transfused participants (6125 participants) are included in the full text. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and asymptomatic or mild disease We identified one RCT reporting on 160 participants, comparing convalescent plasma to placebo treatment (saline).  Effectiveness of convalescent plasma We are very uncertain about the effect of convalescent plasma on all-cause mortality (RR 0.50, 95% CI 0.09 to 2.65; very low-certainty evidence). We are uncertain about the effect of convalescent plasma on developing severe clinical COVID-19 symptoms (RR not estimable; low-certainty evidence).  We identified no study reporting quality of life.  Safety of convalescent plasma We do not know whether convalescent plasma is associated with a higher risk of grade 3 or 4 adverse events (very low-certainty evidence), or serious adverse events (very low-certainty evidence). This is a living systematic review. We search weekly for new evidence and update the review when we identify relevant new evidence. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.

AUTHORS' CONCLUSIONS:

We have high certainty in the evidence that convalescent plasma for the treatment of individuals with moderate to severe disease does not reduce mortality and has little to no impact on measures of clinical improvement. We are uncertain about the adverse effects of convalescent plasma. While major efforts to conduct research on COVID-19 are being made, heterogeneous reporting of outcomes is still problematic. There are 100 ongoing studies and 33 studies reporting in a study registry as being completed or terminated. Publication of ongoing studies might resolve some of the uncertainties around hyperimmune immunoglobulin therapy for people with any disease severity, and convalescent plasma therapy for people with asymptomatic or mild disease.