10 results
Filters
Sort By
Results Per Page
Filters
10 results
Download the following citations:
Email the following citations:
Print the following citations:
Editor's Choice
  • Iannizzi C
  • Chai KL
  • Piechotta V
  • Valk SJ
  • Kimber C
  • et al.
Cochrane Database Syst Rev. 2023 May 10;5(5):CD013600 doi: 10.1002/14651858.CD013600.pub6.
POPULATION:

People of any age with COVID-19 (33 randomised controlled trials (RCTs) n= 24,861).

INTERVENTION:

Convalescent plasma (n= 11,432).

COMPARISON:

Standard plasma, human immunoglobulin, placebo or standard care alone.

OUTCOME:

This living systematic review fourth review update version included 33 RCTs, of these 9 were single‐centre studies and 24 were multi‐centre studies. The authors identified 49 ongoing studies. Individuals with a confirmed diagnosis of COVID‐19 and moderate to severe disease: 23 RCTs compared convalescent plasma to placebo or standard care alone; 5 RCTs compared convalescent plasma to standard plasma, and 1 RCT compared convalescent plasma to human immunoglobulin. Individuals with a confirmed diagnosis of SARS‐CoV‐2 infection and mild disease: 2 RCTs compared convalescent plasma to placebo or standard care alone, and 2 RCTs compared convalescent plasma to standard plasma. When comparing convalescent plasma vs. placebo or standard care alone, authors’ certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. For individuals with mild disease, the authors have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death.

BACKGROUND:

Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required.

OBJECTIVES:

To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach.

SEARCH METHODS:

To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events.

MAIN RESULTS:

In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence.

AUTHORS' CONCLUSIONS:

For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.

Editor's Choice
  • Iannizzi C
  • Chai KL
  • Piechotta V
  • Valk SJ
  • Kimber C
  • et al.
Cochrane Database Syst Rev. 2023 Feb 1;2(2):CD013600 doi: 10.1002/14651858.CD013600.pub5.
POPULATION:

People of any age with mild, moderate or severe COVID-19 (33 randomised controlled trials, n= 24,861).

INTERVENTION:

Convalescent plasma (n= 11,432).

COMPARISON:

Standard plasma, human immunoglobulin, placebo or standard care alone.

OUTCOME:

This living systematic review was a fourth review update version and included 33 studies. The authors identified 49 ongoing studies. For the comparison of convalescent plasma versus placebo or standard care alone, the authors’ certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. For individuals with mild disease, the authors have low certainty evidence for the primary outcomes.

BACKGROUND:

Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required.

OBJECTIVES:

To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach.

SEARCH METHODS:

To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events.

MAIN RESULTS:

In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence.

AUTHORS' CONCLUSIONS:

For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have low certainty evidence for our primary outcomes. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.

  • Kimber C
  • Valk SJ
  • Chai KL
  • Piechotta V
  • Iannizzi C
  • et al.
Cochrane Database Syst Rev. 2023 Jan 26;1(1):CD015167 doi: 10.1002/14651858.CD015167.pub2.
BACKGROUND:

Hyperimmune immunoglobulin (hIVIG) contains polyclonal antibodies, which can be prepared from large amounts of pooled convalescent plasma or prepared from animal sources through immunisation. They are being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). This review was previously part of a parent review addressing convalescent plasma and hIVIG for people with COVID-19 and was split to address hIVIG and convalescent plasma separately.

OBJECTIVES:

To assess the benefits and harms of hIVIG therapy for the treatment of people with COVID-19, and to maintain the currency of the evidence using a living systematic review approach.

SEARCH METHODS:

To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Research Database, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform and Medline and Embase from 1 January 2019 onwards. We carried out searches on 31 March 2022.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) that evaluated hIVIG for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies that evaluated standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies, we used RoB 2. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), quality of life, adverse events, and serious adverse events.

MAIN RESULTS:

We included five RCTs with 947 participants, of whom 688 received hIVIG prepared from humans, 18 received heterologous swine glyco-humanised polyclonal antibody, and 241 received equine-derived processed and purified F(ab')2 fragments. All participants were hospitalised with moderate-to-severe disease, most participants were not vaccinated (only 12 participants were vaccinated). The studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern. There are no data for people with COVID-19 with no symptoms (asymptomatic) or people with mild COVID-19. We identified a further 10 ongoing studies evaluating hIVIG. Benefits of hIVIG prepared from humans We included data on one RCT (579 participants) that assessed the benefits and harms of hIVIG 0.4 g/kg compared to saline placebo. hIVIG may have little to no impact on all-cause mortality at 28 days (risk ratio (RR) 0.79, 95% confidence interval (CI) 0.43 to 1.44; absolute effect 77 per 1000 with placebo versus 61 per 1000 (33 to 111) with hIVIG; low-certainty evidence). The evidence is very uncertain about the effect on worsening of clinical status at day 7 (RR 0.85, 95% CI 0.58 to 1.23; very low-certainty evidence). It probably has little to no impact on improvement of clinical status on day 28 (RR 1.02, 95% CI 0.97 to 1.08; moderate-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if hIVIG has any impact on quality of life. Harms of hIVIG prepared from humans hIVIG may have little to no impact on adverse events at any grade on day 1 (RR 0.98, 95% CI 0.81 to 1.18; 431 per 1000; 1 study 579 participants; low-certainty evidence). Patients receiving hIVIG probably experience more adverse events at grade 3-4 severity than patients who receive placebo (RR 4.09, 95% CI 1.39 to 12.01; moderate-certainty evidence). hIVIG may have little to no impact on the composite outcome of serious adverse events or death up to day 28 (RR 0.72, 95% CI 0.45 to 1.14; moderate-certainty evidence). We also identified additional results on the benefits and harms of other dose ranges of hIVIG, not included in the summary of findings table, but summarised in additional tables. Benefits of animal-derived polyclonal antibodies We included data on one RCT (241 participants) to assess the benefits and harms of receptor-binding domain-specific polyclonal F(ab´)2 fragments of equine antibodies (EpAbs) compared to saline placebo. EpAbs may reduce all-cause mortality at 28 days (RR 0.60, 95% CI 0.26 to 1.37; absolute effect 114 per 1000 with placebo versus 68 per 1000 (30 to 156) ; low-certainty evidence). EpAbs may reduce worsening of clinical status up to day 28 (RR 0.67, 95% CI 0.38 to 1.18; absolute effect 203 per 1000 with placebo versus 136 per 1000 (77 to 240); low-certainty evidence). It may have some effect on improvement of clinical status on day 28 (RR 1.06, 95% CI 0.96 to 1.17; low-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if EpAbs have any impact on quality of life. Harms of animal-derived polyclonal antibodies EpAbs may have little to no impact on the number of adverse events at any grade up to 28 days (RR 0.99, 95% CI 0.74 to 1.31; low-certainty evidence). Adverse events at grade 3-4 severity were not reported. Individuals receiving EpAbs may experience fewer serious adverse events than patients receiving placebo (RR 0.67, 95% CI 0.38 to 1.19; low-certainty evidence). We also identified additional results on the benefits and harms of other animal-derived polyclonal antibody doses, not included in the summary of findings table, but summarised in additional tables.

AUTHORS' CONCLUSIONS:

We included data from five RCTs that evaluated hIVIG compared to standard therapy, with participants with moderate-to-severe disease. As the studies evaluated different preparations (from humans or from various animals) and doses, we could not pool them. hIVIG prepared from humans may have little to no impact on mortality, and clinical improvement and worsening. hIVIG may increase grade 3-4 adverse events. Studies did not evaluate quality of life. RBD-specific polyclonal F(ab´)2 fragments of equine antibodies may reduce mortality and serious adverse events, and may reduce clinical worsening. However, the studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern and prior to widespread vaccine rollout. As no studies evaluated hIVIG for participants with asymptomatic infection or mild disease, benefits for these individuals remains uncertain. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence.

Editor's Choice
  • Piechotta V
  • Iannizzi C
  • Chai KL
  • Valk SJ
  • Kimber C
  • et al.
Cochrane Database Syst Rev. 2021 May 20;5(5):CD013600 doi: 10.1002/14651858.CD013600.pub4.
POPULATION:

Patients with COVID-19 (13 studies, n= 48,509).

INTERVENTION:

Convalescent plasma (n= 41,880) or hyperimmune immunoglobulin.

COMPARISON:

Standard plasma, placebo treatment or standard care alone,

OUTCOME:

Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 7 RCTs, 12,646 participants; high-certainty evidence). It has little to no impact on clinical improvement for all participants when assessed by liberation from respiratory support (RR not estimable, 8 RCTs, 12,682 participants; high-certainty evidence). It has little to no impact on the chance of being weaned or liberated from invasive mechanical ventilation for the subgroup of participants requiring invasive mechanical ventilation at baseline (RR 1.04, 2 RCTs, 630 participants; low-certainty evidence). It does not reduce the need for invasive mechanical ventilation (RR 0.98, 4 RCTs, 11,765 participants; high-certainty evidence). There was low-certainty evidence on whether convalescent plasma increases or reduces the risk of grade 3 and 4 adverse events (RR 0.90, 4 RCTs, 905 participants), and serious adverse events (RR 1.24, 2 RCTs, 414 participants). No completed studies were identified on quality of life, or hyperimmune immunoglobulin therapy.

BACKGROUND:

Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are being investigated as potential therapies for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of these interventions is required.  OBJECTIVES: Using a living systematic review approach, to assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19; and to maintain the currency of the evidence.

SEARCH METHODS:

To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform, and trial registries. Searches were done on 17 March 2021.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) evaluating convalescent plasma or hyperimmune immunoglobulin for COVID-19, irrespective of disease severity, age, gender or ethnicity. For safety assessments, we also included non-controlled non-randomised studies of interventions (NRSIs) if 500 or more participants were included. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of Bias 2' tool for RCTs, and for NRSIs, the assessment criteria for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), development of severe clinical COVID-19 symptoms (for individuals with asymptomatic or mild disease), quality of life (including fatigue and functional independence), grade 3 or 4 adverse events, and serious adverse events.

MAIN RESULTS:

We included 13 studies (12 RCTs, 1 NRSI) with 48,509 participants, of whom 41,880 received convalescent plasma. We did not identify any completed studies evaluating hyperimmune immunoglobulin. We identified a further 100 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, and 33 studies reporting as being completed or terminated. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease Eleven RCTs and one NRSI investigated the use of convalescent plasma for 48,349 participants with moderate to severe disease. Nine RCTs compared convalescent plasma to placebo treatment or standard care alone, and two compared convalescent plasma to standard plasma (results not included in abstract). Effectiveness of convalescent plasma We included data on nine RCTs (12,875 participants) to assess the effectiveness of convalescent plasma compared to placebo or standard care alone.  Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.05; 7 RCTs, 12,646 participants; high-certainty evidence). It has little to no impact on clinical improvement for all participants when assessed by liberation from respiratory support (RR not estimable; 8 RCTs, 12,682 participants; high-certainty evidence). It has little to no impact on the chance of being weaned or liberated from invasive mechanical ventilation for the subgroup of participants requiring invasive mechanical ventilation at baseline (RR 1.04, 95% CI 0.57 to 1.93; 2 RCTs, 630 participants; low-certainty evidence). It does not reduce the need for invasive mechanical ventilation (RR 0.98, 95% CI 0.89 to 1.08; 4 RCTs, 11,765 participants; high-certainty evidence). We did not identify any subgroup differences.  We did not identify any studies reporting quality of life, and therefore, do not know whether convalescent plasma has any impact on quality of life. One RCT assessed resolution of fatigue on day 7, but we are very uncertain about the effect (RR 1.21, 95% CI 1.02 to 1.42; 309 participants; very low-certainty evidence).  Safety of convalescent plasma We included results from eight RCTs, and one NRSI, to assess the safety of convalescent plasma. Some of the RCTs reported on safety data only for the convalescent plasma group.  We are uncertain whether convalescent plasma increases or reduces the risk of grade 3 and 4 adverse events (RR 0.90, 95% CI 0.58 to 1.41; 4 RCTs, 905 participants; low-certainty evidence), and serious adverse events (RR 1.24, 95% CI 0.81 to 1.90; 2 RCTs, 414 participants; low-certainty evidence).  A summary of reported events of the NRSI (reporting safety data for 20,000 of 35,322 transfused participants), and four RCTs reporting safety data only for transfused participants (6125 participants) are included in the full text. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and asymptomatic or mild disease We identified one RCT reporting on 160 participants, comparing convalescent plasma to placebo treatment (saline).  Effectiveness of convalescent plasma We are very uncertain about the effect of convalescent plasma on all-cause mortality (RR 0.50, 95% CI 0.09 to 2.65; very low-certainty evidence). We are uncertain about the effect of convalescent plasma on developing severe clinical COVID-19 symptoms (RR not estimable; low-certainty evidence).  We identified no study reporting quality of life.  Safety of convalescent plasma We do not know whether convalescent plasma is associated with a higher risk of grade 3 or 4 adverse events (very low-certainty evidence), or serious adverse events (very low-certainty evidence). This is a living systematic review. We search weekly for new evidence and update the review when we identify relevant new evidence. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.

AUTHORS' CONCLUSIONS:

We have high certainty in the evidence that convalescent plasma for the treatment of individuals with moderate to severe disease does not reduce mortality and has little to no impact on measures of clinical improvement. We are uncertain about the adverse effects of convalescent plasma. While major efforts to conduct research on COVID-19 are being made, heterogeneous reporting of outcomes is still problematic. There are 100 ongoing studies and 33 studies reporting in a study registry as being completed or terminated. Publication of ongoing studies might resolve some of the uncertainties around hyperimmune immunoglobulin therapy for people with any disease severity, and convalescent plasma therapy for people with asymptomatic or mild disease.

  • Chai KL
  • Valk SJ
  • Piechotta V
  • Kimber C
  • Monsef I
  • et al.
Cochrane Database Syst Rev. 2020 Oct 12;10:CD013600 doi: 10.1002/14651858.CD013600.pub3.
BACKGROUND:

Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required.  OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19.

SEARCH METHODS:

We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 19 August 2020.

SELECTION CRITERIA:

We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' 2.0 tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, mortality (time to event), improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events (AEs), and serious adverse events (SAEs).

MAIN RESULTS:

This is the second living update of our review. We included 19 studies (2 RCTs, 8 controlled NRSIs, 9 non-controlled NRSIs) with 38,160 participants, of whom 36,081 received convalescent plasma. Two completed RCTs are awaiting assessment (published after 19 August 2020). We identified a further 138 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 73 are randomised (3 reported in a study registry as already being completed, but without results). We did not identify any completed studies evaluating hyperimmune immunoglobulin. We did not include data from controlled NRSIs in data synthesis because of critical risk of bias. The overall certainty of evidence was low to very low, due to study limitations and results including both potential benefits and harms.  Effectiveness of convalescent plasma for people with COVID-19  We included results from two RCTs (both stopped early) with 189 participants, of whom 95 received convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. We are uncertain whether convalescent plasma decreases all-cause mortality at hospital discharge (risk ratio (RR) 0.55, 95% confidence interval (CI) 0.22 to 1.34; 1 RCT, 86 participants; low-certainty evidence).  We are uncertain whether convalescent plasma decreases mortality (time to event) (hazard ratio (HR) 0.64, 95% CI 0.33 to 1.25; 2 RCTs, 189 participants; low-certainty evidence). Convalescent plasma may result in little to no difference in improvement of clinical symptoms (i.e. need for respiratory support) at seven days (RR 0.98, 95% CI 0.30 to 3.19; 1 RCT, 103 participants; low-certainty evidence). Convalescent plasma may increase improvement of clinical symptoms at up to 15 days (RR 1.34, 95% CI 0.85 to 2.11; 2 RCTs, 189 participants; low-certainty evidence), and at up to 30 days (RR 1.13, 95% CI 0.88 to 1.43; 2 studies, 188 participants; low-certainty evidence).  No studies reported on quality of life.  Safety of convalescent plasma for people with COVID-19 We included results from two RCTs, eight controlled NRSIs and nine non-controlled NRSIs assessing safety of convalescent plasma. Reporting of safety data and duration of follow-up was variable. The controlled studies reported on AEs and SAEs only in participants receiving convalescent plasma. Some, but not all, studies included death as a SAE.  The studies did not report the grade of AEs. Fourteen studies (566 participants) reported on AEs of possible grade 3 or 4 severity. The majority of these AEs were allergic or respiratory events. We are very uncertain whether convalescent plasma therapy affects the risk of moderate to severe AEs (very low-certainty evidence).  17 studies (35,944 participants) assessed SAEs for 20,622 of its participants. The majority of participants were from one non-controlled NRSI (20,000 participants), which reported on SAEs within the first four hours and within an additional seven days after transfusion. There were 63 deaths, 12 were possibly and one was probably related to transfusion. There were 146 SAEs within four hours and 1136 SAEs within seven days post-transfusion. These were predominantly allergic or respiratory, thrombotic or thromboembolic and cardiac events. We are uncertain whether convalescent plasma therapy results in a clinically relevant increased risk of SAEs (low-certainty evidence).

AUTHORS' CONCLUSIONS:

We are uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. There was limited information regarding grade 3 and 4 AEs to determine the effect of convalescent plasma therapy on clinically relevant SAEs. In the absence of a control group, we are unable to assess the relative safety of convalescent plasma therapy.  While major efforts to conduct research on COVID-19 are being made, recruiting the anticipated number of participants into these studies is problematic. The early termination of the first two RCTs investigating convalescent plasma, and the lack of data from 20 studies that have completed or were due to complete at the time of this update illustrate these challenges. Well-designed studies should be prioritised. Moreover, studies should report outcomes in the same way, and should consider the importance of maintaining comparability in terms of co-interventions administered in all study arms.  There are 138 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 73 are RCTs (three already completed). This is the second living update of the review, and we will continue to update this review periodically. Future updates may show different results to those reported here.

  • Piechotta V
  • Chai KL
  • Valk SJ
  • Doree C
  • Monsef I
  • et al.
Cochrane Database Syst Rev. 2020 Jul 10;7(7):CD013600 doi: 10.1002/14651858.CD013600.pub2.
BACKGROUND:

Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required.  OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19.

SEARCH METHODS:

We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 4 June 2020.

SELECTION CRITERIA:

We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin.

DATA COLLECTION AND ANALYSIS:

We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs.  MAIN RESULTS: This is the first living update of our review. We included 20 studies (1 RCT, 3 controlled NRSIs, 16 non-controlled NRSIs) with 5443 participants, of whom 5211 received convalescent plasma, and identified a further 98 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 50 are randomised. We did not identify any completed studies evaluating hyperimmune immunoglobulin. Overall risk of bias of included studies was high, due to study design, type of participants, and other previous or concurrent treatments. Effectiveness of convalescent plasma for people with COVID-19  We included results from four controlled studies (1 RCT (stopped early) with 103 participants, of whom 52 received convalescent plasma; and 3 controlled NRSIs with 236 participants, of whom 55 received convalescent plasma) to assess effectiveness of convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. All-cause mortality at hospital discharge (1 controlled NRSI, 21 participants) We are very uncertain whether convalescent plasma has any effect on all-cause mortality at hospital discharge (risk ratio (RR) 0.89, 95% confidence interval (CI) 0.61 to 1.31; very low-certainty evidence). Time to death (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma prolongs time to death (RCT: hazard ratio (HR) 0.74, 95% CI 0.30 to 1.82; controlled NRSI: HR 0.46, 95% CI 0.22 to 0.96; very low-certainty evidence). Improvement of clinical symptoms, assessed by need for respiratory support (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma has any effect on improvement of clinical symptoms at seven days (RCT: RR 0.98, 95% CI 0.30 to 3.19), 14 days (RCT: RR 1.85, 95% CI 0.91 to 3.77; controlled NRSI: RR 1.08, 95% CI 0.91 to 1.29), and 28 days (RCT: RR 1.20, 95% CI 0.80 to 1.81; very low-certainty evidence). Quality of life No studies reported this outcome.  Safety of convalescent plasma for people with COVID-19 We included results from 1 RCT, 3 controlled NRSIs and 10 non-controlled NRSIs assessing safety of convalescent plasma. Reporting of adverse events and serious adverse events was variable. The controlled studies reported on adverse events and serious adverse events only in participants receiving convalescent plasma. The duration of follow-up varied. Some, but not all, studies included death as a serious adverse event.  Grade 3 or 4 adverse events (13 studies, 201 participants) The studies did not report the grade of adverse events. Thirteen studies (201 participants) reported on adverse events of possible grade 3 or 4 severity. The majority of these adverse events were allergic or respiratory events. We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence).  Serious adverse events (14 studies, 5201 participants)  Fourteen studies (5201 participants) reported on serious adverse events. The majority of participants were from one non-controlled NRSI (5000 participants), which reported only on serious adverse events limited to the first four hours after convalescent plasma transfusion. This study included death as a serious adverse event; they reported 15 deaths, four of which they classified as potentially, probably or definitely related to transfusion. Other serious adverse events reported in all studies were predominantly allergic or respiratory in nature, including anaphylaxis, transfusion-associated dyspnoea, and transfusion-related acute lung injury (TRALI). We are very uncertain whether or not convalescent plasma affects the number of serious adverse events.

AUTHORS' CONCLUSIONS:

We are very uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. For safety outcomes we also included non-controlled NRSIs. There was limited information regarding adverse events. Of the controlled studies, none reported on this outcome in the control group. There is only very low-certainty evidence for safety of convalescent plasma for COVID-19.  While major efforts to conduct research on COVID-19 are being made, problems with recruiting the anticipated number of participants into these studies are conceivable. The early termination of the first RCT investigating convalescent plasma, and the multitude of studies registered in the past months illustrate this. It is therefore necessary to critically assess the design of these registered studies, and well-designed studies should be prioritised. Other considerations for these studies are the need to report outcomes for all study arms in the same way, and the importance of maintaining comparability in terms of co-interventions administered in all study arms.  There are 98 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 50 are RCTs. This is the first living update of the review, and we will continue to update this review periodically. These updates may show different results to those reported here.

  • Valk SJ
  • Piechotta V
  • Chai KL
  • Doree C
  • Monsef I
  • et al.
Cochrane Database Syst Rev. 2020 May 14;5(5):CD013600 doi: 10.1002/14651858.CD013600.
BACKGROUND:

Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with respiratory virus diseases, and are currently being investigated in trials as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required.  OBJECTIVES: To assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19.

SEARCH METHODS:

The protocol was pre-published with the Center for Open Science and can be accessed here: osf.io/dwf53  We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trials registries to identify ongoing studies and results of completed studies on 23 April 2020 for case-series, cohort, prospectively planned, and randomised controlled trials (RCTs).

SELECTION CRITERIA:

We followed standard Cochrane methodology and performed all steps regarding study selection in duplicate by two independent review authors (in contrast to the recommendations of the Cochrane Rapid Reviews Methods Group). We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulins.

DATA COLLECTION AND ANALYSIS:

We followed recommendations of the Cochrane Rapid Reviews Methods Group regarding data extraction and assessment. To assess bias in included studies, we used the assessment criteria tool for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events, and serious adverse events.  MAIN RESULTS: We included eight studies (seven case-series, one prospectively planned, single-arm intervention study) with 32 participants, and identified a further 48 ongoing studies evaluating convalescent plasma (47 studies) or hyperimmune immunoglobulin (one study), of which 22 are randomised. Overall risk of bias of the eight included studies was high, due to: study design; small number of participants; poor reporting within studies; and varied type of participants with different severities of disease, comorbidities, and types of previous or concurrent treatments, including antivirals, antifungals or antibiotics, corticosteroids, hydroxychloroquine and respiratory support. We rated all outcomes as very low certainty, and we were unable to summarise numerical data in any meaningful way. As we identified case-series studies only, we reported results narratively. Effectiveness of convalescent plasma for people with COVID-19 The following reported outcomes could all be related to the underlying natural history of the disease or other concomitant treatment, rather than convalescent plasma. All-cause mortality at hospital discharge All studies reported mortality. All participants were alive at the end of the reporting period, but not all participants had been discharged from hospital by the end of the study (15 participants discharged, 6 still hospitalised, 11 unclear). Follow-up ranged from 3 days to 37 days post-transfusion. We do not know whether convalescent plasma therapy affects mortality (very low-certainty evidence).  Improvement of clinical symptoms (assessed by respiratory support) Six studies, including 28 participants, reported the level of respiratory support required; most participants required respiratory support at baseline. All studies reported improvement in clinical symptoms in at least some participants. We do not know whether convalescent plasma improves clinical symptoms (very low-certainty evidence). Time to discharge from hospital Six studies reported time to discharge from hospital for at least some participants, which ranged from four to 35 days after convalescent plasma therapy.  Admission on the intensive care unit (ICU) Six studies included patients who were critically ill. At final follow-up the majority of these patients were no longer on the ICU or no longer required mechanical ventilation. Length of stay on the ICU Only one study (1 participant) reported length of stay on the ICU. The individual was discharged from the ICU 11 days after plasma transfusion. Safety of convalescent plasma for people with COVID-19 Grade 3 or 4 adverse events  The studies did not report the grade of adverse events after convalescent plasma transfusion. Two studies reported data relating to participants who had experienced adverse events, that were presumably grade 3 or 4. One case study reported a participant who had moderate fever (38.9 °C). Another study (3 participants) reported a case of severe anaphylactic shock. Four studies reported the absence of moderate or severe adverse events (19 participants). We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events One study (3 participants) reported one serious adverse event. As described above, this individual had severe anaphylactic shock after receiving convalescent plasma. Six studies reported that no serious adverse events occurred. We are very uncertain whether or not convalescent plasma therapy affects the risk of serious adverse events (very low-certainty evidence).  AUTHORS' CONCLUSIONS: We identified eight studies (seven case-series and one prospectively planned single-arm intervention study) with a total of 32 participants (range 1 to 10). Most studies assessed the risks of the intervention; reporting two adverse events (potentially grade 3 or 4), one of which was a serious adverse event. We are very uncertain whether convalescent plasma is effective for people admitted to hospital with COVID-19 as studies reported results inconsistently, making it difficult to compare results and to draw conclusions. We identified very low-certainty evidence on the effectiveness and safety of convalescent plasma therapy for people with COVID-19; all studies were at high risk of bias and reporting quality was low. No RCTs or controlled non-randomised studies evaluating benefits and harms of convalescent plasma have been completed. There are 47 ongoing studies evaluating convalescent plasma, of which 22 are RCTs, and one trial evaluating hyperimmune immunoglobulin. We will update this review as a living systematic review, based on monthly searches in the above mentioned databases and registries. These updates are likely to show different results to those reported here.

  • Crighton GL
  • Estcourt LJ
  • Wood EM
  • Trivella M
  • Doree C
  • et al.
Cochrane Database Syst Rev. 2015 Sep 30;2015(9):CD010981 doi: 10.1002/14651858.CD010981.pub2.
BACKGROUND:

Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in thrombocytopenic patients with bone marrow failure. Although considerable advances have been made in platelet transfusion therapy in the last 40 years, some areas continue to provoke debate, especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding.This is an update of a Cochrane review first published in 2004 and updated in 2012 that addressed four separate questions: therapeutic-only versus prophylactic platelet transfusion policy; prophylactic platelet transfusion threshold; prophylactic platelet transfusion dose; and platelet transfusions compared to alternative treatments. We have now split this review into four smaller reviews looking at these questions individually; this review is the first part of the original review.

OBJECTIVES:

To determine whether a therapeutic-only platelet transfusion policy (platelet transfusions given when patient bleeds) is as effective and safe as a prophylactic platelet transfusion policy (platelet transfusions given to prevent bleeding, usually when the platelet count falls below a given trigger level) in patients with haematological disorders undergoing myelosuppressive chemotherapy or stem cell transplantation.

SEARCH METHODS:

We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (Cochrane Library 2015, Issue 6), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950) and ongoing trial databases to 23 July 2015.

SELECTION CRITERIA:

RCTs involving transfusions of platelet concentrates prepared either from individual units of whole blood or by apheresis, and given to prevent or treat bleeding in patients with malignant haematological disorders receiving myelosuppressive chemotherapy or undergoing HSCT.

DATA COLLECTION AND ANALYSIS:

We used standard methodological procedures expected by The Cochrane Collaboration.

MAIN RESULTS:

We identified seven RCTs that compared therapeutic platelet transfusions to prophylactic platelet transfusions in haematology patients undergoing myelosuppressive chemotherapy or HSCT. One trial is still ongoing, leaving six trials eligible with a total of 1195 participants. These trials were conducted between 1978 and 2013 and enrolled participants from fairly comparable patient populations. We were able to critically appraise five of these studies, which contained separate data for each arm, and were unable to perform quantitative analysis on one study that did not report the numbers of participants in each treatment arm.Overall the quality of evidence per outcome was low to moderate according to the GRADE approach. None of the included studies were at low risk of bias in every domain, and all the studies identified had some threats to validity. We deemed only one study to be at low risk of bias in all domains other than blinding.Two RCTs (801 participants) reported at least one bleeding episode within 30 days of the start of the study. We were unable to perform a meta-analysis due to considerable statistical heterogeneity between studies. The statistical heterogeneity seen may relate to the different methods used in studies for the assessment and grading of bleeding. The underlying patient diagnostic and treatment categories also appeared to have some effect on bleeding risk. Individually these studies showed a similar effect, that a therapeutic-only platelet transfusion strategy was associated with an increased risk of clinically significant bleeding compared with a prophylactic platelet transfusion policy. Number of days with a clinically significant bleeding event per participant was higher in the therapeutic-only group than in the prophylactic group (one RCT; 600 participants; mean difference 0.50, 95% confidence interval (CI) 0.10 to 0.90; moderate-quality evidence). There was insufficient evidence to determine whether there was any difference in the number of participants with severe or life-threatening bleeding between a therapeutic-only transfusion policy and a prophylactic platelet transfusion policy (two RCTs; 801 participants; risk ratio (RR) 4.91, 95% CI 0.86 to 28.12; low-quality evidence). Two RCTs (801 participants) reported time to first bleeding episode. As there was considerable heterogeneity between the studies, we were unable to perform a meta-analysis. Both studies individually found that time to first bleeding episode was shorter in the therapeutic-only group compared with the prophylactic platelet transfusion group.There was insufficient evidence to determine any difference in all-cause mortality within 30 days of the start of the study using a therapeutic-only platelet transfusion policy compared with a prophylactic platelet transfusion policy (two RCTs; 629 participants). Mortality was a rare event, and therefore larger studies would be needed to establish the effect of these alternative strategies. There was a clear reduction in the number of platelet transfusions per participant in the therapeutic-only arm (two RCTs, 991 participants; standardised mean reduction of 0.50 platelet transfusions per participant, 95% CI -0.63 to -0.37; moderate-quality evidence). None of the studies reported quality of life. There was no evidence of any difference in the frequency of adverse events, such as transfusion reactions, between a therapeutic-only and prophylactic platelet transfusion policy (two RCTs; 991 participants; RR 1.02, 95% CI 0.62 to 1.68), although the confidence intervals were wide.

AUTHORS' CONCLUSIONS:

We found low- to moderate-grade evidence that a therapeutic-only platelet transfusion policy is associated with increased risk of bleeding when compared with a prophylactic platelet transfusion policy in haematology patients who are thrombocytopenic due to myelosuppressive chemotherapy or HSCT. There is insufficient evidence to determine any difference in mortality rates and no evidence of any difference in adverse events between a therapeutic-only platelet transfusion policy and a prophylactic platelet transfusion policy. A therapeutic-only platelet transfusion policy is associated with a clear reduction in the number of platelet components administered.

  • McQuilten ZK
  • Crighton G
  • Engelbrecht S
  • Gotmaker R
  • Brunskill SJ
  • et al.
Transfus Med Rev. 2015 Apr;29(2):127-37 doi: 10.1016/j.tmrv.2015.01.001.

Critical bleeding (CB) requiring massive transfusion (MT) can occur in a variety of clinical contexts and is associated with substantial mortality and morbidity. In 2011, the Australian National Blood Authority (NBA) published patient blood management guidelines for CB and MT, which found limited high-quality evidence from which only 2 recommendations could be made. The aim of this systematic review (SR) was to update these guidelines and identify evidence gaps still to be addressed. A comprehensive search was performed for randomized controlled trials (RCTs) and SRs using MeSH index and free text terms in MEDLINE, the Cochrane Library (Issue 11, 2012), EMBASE, CINHAL, PUBMED, and the Transfusion Evidence Library up to July 15, 2014. The evidence was grouped according to 4 questions based on the original guideline relating to transfusion interventions: (1) effect of dose, timing, and ratio of red blood cells (RBCs) to component therapy on patient outcomes; (2) effect of RBC transfusion on patient outcomes; (3) effect of fresh frozen plasma, platelet, cryoprecipitate, fibrinogen concentrate, and prothrombin complex concentrate on patient outcomes; and (4) effect of recombinant activated factor VII (rFVIIa) on patient outcomes. From this search, 19 studies were identified: 6 RCTs and 13 SRs. Two of the RCTs were pilot/feasibility studies, 3 were investigating rFVIIa, and 1 compared restrictive versus liberal RBC transfusion in upper gastrointestinal hemorrhage. Overall, limited new evidence was identified and substantial evidence gaps remain, particularly with regard to the effect of component therapies, including ratio of RBC to component therapies, on patient outcomes. Clinical trials to address these questions are required.

  • Enticott JC
  • Jeffcott S
  • Ibrahim JE
  • Wood EM
  • Cole-Sinclair M
  • et al.
Transfusion. 2012 Dec;52(12):2692-705 doi: 10.1111/j.1537-2995.2012.03648.x.
BACKGROUND:

Critically bleeding trauma patients require coordinated and efficient decision-making processes to ensure optimal management of their massive transfusion (MT) requirements. Human factors (HFs) is a discipline that investigates factors influencing work processes from the organizational, group, and individual levels. Given the complexity of trauma resuscitation, implementing any intervention for decision support in MT is challenging and may benefit from a HFs-assisted approach.

STUDY DESIGN AND METHODS:

A systematic review was performed to identify reports of the introduction of any type of decision support for the provision of MT in critically bleeding adult trauma patients. Crucial contributions reported to influence design and uptake of the intervention were categorized into four HFs categories (environment, human, machine, and task). Extracted information was supplemented by surveying the contact authors. Evidence of clinical practice changes resulting from the intervention was also considered.

RESULTS:

We identified nine studies that had reported an intervention implementing new practice guidelines or a MT protocol. All were before-and-after comparative cohort studies and used historical controls as the preintervention cohort.

CONCLUSION:

Based on the identified reports, this review provides a HFs-assisted approach to aid clinicians and policy makers with the implementation of decision support for MT in the trauma care setting.